This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsubm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| gsumsubm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | ||
| gsumsubm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| gsumsubm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | ||
| Assertion | gsumsubm | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsubm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | gsumsubm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 3 | gsumsubm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 4 | gsumsubm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | submrcl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 9 | 5 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 12 | 11 | subm0cl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 14 | 5 6 11 | mndlrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) ) |
| 15 | 8 14 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) ) |
| 16 | 5 6 4 8 1 10 3 13 15 | gsumress | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |