This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgabl.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| Assertion | subcmn | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐻 ∈ CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgabl.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | eqidd | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 5 | 3 4 | mndidcl | ⊢ ( 𝐻 ∈ Mnd → ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) ) |
| 6 | n0i | ⊢ ( ( 0g ‘ 𝐻 ) ∈ ( Base ‘ 𝐻 ) → ¬ ( Base ‘ 𝐻 ) = ∅ ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐻 ∈ Mnd → ¬ ( Base ‘ 𝐻 ) = ∅ ) |
| 8 | reldmress | ⊢ Rel dom ↾s | |
| 9 | 8 | ovprc2 | ⊢ ( ¬ 𝑆 ∈ V → ( 𝐺 ↾s 𝑆 ) = ∅ ) |
| 10 | 1 9 | eqtrid | ⊢ ( ¬ 𝑆 ∈ V → 𝐻 = ∅ ) |
| 11 | 10 | fveq2d | ⊢ ( ¬ 𝑆 ∈ V → ( Base ‘ 𝐻 ) = ( Base ‘ ∅ ) ) |
| 12 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 13 | 11 12 | eqtr4di | ⊢ ( ¬ 𝑆 ∈ V → ( Base ‘ 𝐻 ) = ∅ ) |
| 14 | 7 13 | nsyl2 | ⊢ ( 𝐻 ∈ Mnd → 𝑆 ∈ V ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝑆 ∈ V ) |
| 16 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 17 | 1 16 | ressplusg | ⊢ ( 𝑆 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 18 | 15 17 | syl | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 19 | simpr | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐻 ∈ Mnd ) | |
| 20 | simpl | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐺 ∈ CMnd ) | |
| 21 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 22 | 1 21 | ressbasss | ⊢ ( Base ‘ 𝐻 ) ⊆ ( Base ‘ 𝐺 ) |
| 23 | 22 | sseli | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐻 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 24 | 22 | sseli | ⊢ ( 𝑦 ∈ ( Base ‘ 𝐻 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 25 | 21 16 | cmncom | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 26 | 20 23 24 25 | syl3an | ⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 27 | 2 18 19 26 | iscmnd | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐻 ∈ CMnd ) |