This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resstopn.1 | ⊢ 𝐻 = ( 𝐾 ↾s 𝐴 ) | |
| resstopn.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | ||
| Assertion | resstopn | ⊢ ( 𝐽 ↾t 𝐴 ) = ( TopOpen ‘ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resstopn.1 | ⊢ 𝐻 = ( 𝐾 ↾s 𝐴 ) | |
| 2 | resstopn.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | |
| 3 | fvex | ⊢ ( TopSet ‘ 𝐾 ) ∈ V | |
| 4 | fvex | ⊢ ( Base ‘ 𝐾 ) ∈ V | |
| 5 | restco | ⊢ ( ( ( TopSet ‘ 𝐾 ) ∈ V ∧ ( Base ‘ 𝐾 ) ∈ V ∧ 𝐴 ∈ V ) → ( ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ↾t 𝐴 ) = ( ( TopSet ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) | |
| 6 | 3 4 5 | mp3an12 | ⊢ ( 𝐴 ∈ V → ( ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ↾t 𝐴 ) = ( ( TopSet ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) ) |
| 7 | eqid | ⊢ ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 ) | |
| 8 | 1 7 | resstset | ⊢ ( 𝐴 ∈ V → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐻 ) ) |
| 9 | incom | ⊢ ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 11 | 1 10 | ressbas | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ 𝐻 ) ) |
| 12 | 9 11 | eqtrid | ⊢ ( 𝐴 ∈ V → ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) = ( Base ‘ 𝐻 ) ) |
| 13 | 8 12 | oveq12d | ⊢ ( 𝐴 ∈ V → ( ( TopSet ‘ 𝐾 ) ↾t ( ( Base ‘ 𝐾 ) ∩ 𝐴 ) ) = ( ( TopSet ‘ 𝐻 ) ↾t ( Base ‘ 𝐻 ) ) ) |
| 14 | 6 13 | eqtrd | ⊢ ( 𝐴 ∈ V → ( ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ↾t 𝐴 ) = ( ( TopSet ‘ 𝐻 ) ↾t ( Base ‘ 𝐻 ) ) ) |
| 15 | 10 7 | topnval | ⊢ ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = ( TopOpen ‘ 𝐾 ) |
| 16 | 15 2 | eqtr4i | ⊢ ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = 𝐽 |
| 17 | 16 | oveq1i | ⊢ ( ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 19 | eqid | ⊢ ( TopSet ‘ 𝐻 ) = ( TopSet ‘ 𝐻 ) | |
| 20 | 18 19 | topnval | ⊢ ( ( TopSet ‘ 𝐻 ) ↾t ( Base ‘ 𝐻 ) ) = ( TopOpen ‘ 𝐻 ) |
| 21 | 14 17 20 | 3eqtr3g | ⊢ ( 𝐴 ∈ V → ( 𝐽 ↾t 𝐴 ) = ( TopOpen ‘ 𝐻 ) ) |
| 22 | simpr | ⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → 𝐴 ∈ V ) | |
| 23 | restfn | ⊢ ↾t Fn ( V × V ) | |
| 24 | 23 | fndmi | ⊢ dom ↾t = ( V × V ) |
| 25 | 24 | ndmov | ⊢ ( ¬ ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ∅ ) |
| 26 | 22 25 | nsyl5 | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐽 ↾t 𝐴 ) = ∅ ) |
| 27 | reldmress | ⊢ Rel dom ↾s | |
| 28 | 27 | ovprc2 | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐾 ↾s 𝐴 ) = ∅ ) |
| 29 | 1 28 | eqtrid | ⊢ ( ¬ 𝐴 ∈ V → 𝐻 = ∅ ) |
| 30 | 29 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( TopSet ‘ 𝐻 ) = ( TopSet ‘ ∅ ) ) |
| 31 | tsetid | ⊢ TopSet = Slot ( TopSet ‘ ndx ) | |
| 32 | 31 | str0 | ⊢ ∅ = ( TopSet ‘ ∅ ) |
| 33 | 30 32 | eqtr4di | ⊢ ( ¬ 𝐴 ∈ V → ( TopSet ‘ 𝐻 ) = ∅ ) |
| 34 | 33 | oveq1d | ⊢ ( ¬ 𝐴 ∈ V → ( ( TopSet ‘ 𝐻 ) ↾t ( Base ‘ 𝐻 ) ) = ( ∅ ↾t ( Base ‘ 𝐻 ) ) ) |
| 35 | 0rest | ⊢ ( ∅ ↾t ( Base ‘ 𝐻 ) ) = ∅ | |
| 36 | 34 20 35 | 3eqtr3g | ⊢ ( ¬ 𝐴 ∈ V → ( TopOpen ‘ 𝐻 ) = ∅ ) |
| 37 | 26 36 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐽 ↾t 𝐴 ) = ( TopOpen ‘ 𝐻 ) ) |
| 38 | 21 37 | pm2.61i | ⊢ ( 𝐽 ↾t 𝐴 ) = ( TopOpen ‘ 𝐻 ) |