This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submonoids are themselves monoids under the given operation. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submmnd.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
| Assertion | submmnd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝐻 ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submmnd.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
| 2 | submrcl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 5 | 3 4 1 | issubm2 | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ) ) |
| 6 | 2 5 | syl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ) |
| 8 | 7 | simp3d | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝐻 ∈ Mnd ) |