This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | toponsspwpw | ⊢ ( TopOn ‘ 𝐴 ) ⊆ 𝒫 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssab | ⊢ { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ⊆ { 𝑦 ∣ 𝐴 = ∪ 𝑦 } | |
| 2 | eqcom | ⊢ ( 𝐴 = ∪ 𝑦 ↔ ∪ 𝑦 = 𝐴 ) | |
| 3 | 2 | abbii | ⊢ { 𝑦 ∣ 𝐴 = ∪ 𝑦 } = { 𝑦 ∣ ∪ 𝑦 = 𝐴 } |
| 4 | 1 3 | sseqtri | ⊢ { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ⊆ { 𝑦 ∣ ∪ 𝑦 = 𝐴 } |
| 5 | pwpwssunieq | ⊢ { 𝑦 ∣ ∪ 𝑦 = 𝐴 } ⊆ 𝒫 𝒫 𝐴 | |
| 6 | 4 5 | sstri | ⊢ { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ⊆ 𝒫 𝒫 𝐴 |
| 7 | pwexg | ⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) | |
| 8 | 7 | pwexd | ⊢ ( 𝐴 ∈ V → 𝒫 𝒫 𝐴 ∈ V ) |
| 9 | ssexg | ⊢ ( ( { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ⊆ 𝒫 𝒫 𝐴 ∧ 𝒫 𝒫 𝐴 ∈ V ) → { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ∈ V ) | |
| 10 | 6 8 9 | sylancr | ⊢ ( 𝐴 ∈ V → { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ∈ V ) |
| 11 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝑦 ) ) | |
| 12 | 11 | rabbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦 } = { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ) |
| 13 | df-topon | ⊢ TopOn = ( 𝑥 ∈ V ↦ { 𝑦 ∈ Top ∣ 𝑥 = ∪ 𝑦 } ) | |
| 14 | 12 13 | fvmptg | ⊢ ( ( 𝐴 ∈ V ∧ { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ∈ V ) → ( TopOn ‘ 𝐴 ) = { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ) |
| 15 | 10 14 | mpdan | ⊢ ( 𝐴 ∈ V → ( TopOn ‘ 𝐴 ) = { 𝑦 ∈ Top ∣ 𝐴 = ∪ 𝑦 } ) |
| 16 | 15 6 | eqsstrdi | ⊢ ( 𝐴 ∈ V → ( TopOn ‘ 𝐴 ) ⊆ 𝒫 𝒫 𝐴 ) |
| 17 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( TopOn ‘ 𝐴 ) = ∅ ) | |
| 18 | 0ss | ⊢ ∅ ⊆ 𝒫 𝒫 𝐴 | |
| 19 | 17 18 | eqsstrdi | ⊢ ( ¬ 𝐴 ∈ V → ( TopOn ‘ 𝐴 ) ⊆ 𝒫 𝒫 𝐴 ) |
| 20 | 16 19 | pm2.61i | ⊢ ( TopOn ‘ 𝐴 ) ⊆ 𝒫 𝒫 𝐴 |