This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tgpt1.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| Assertion | tgpt0 | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpt1.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | 1 | tgpt1 | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Fre ) ) |
| 3 | t1t0 | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 ) | |
| 4 | eleq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑧 ) ) | |
| 5 | eleq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ↔ ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 7 | 6 | rspccva | ⊢ ( ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) |
| 8 | 7 | adantll | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) |
| 9 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 10 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝐺 ∈ Grp ) |
| 11 | simpllr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) | |
| 12 | 11 | simprd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 14 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 15 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 16 | 13 14 15 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 17 | 10 12 16 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 18 | 17 | oveq1d | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 19 | 11 | simpld | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 20 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 21 | 13 20 14 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 22 | 10 19 21 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 23 | 18 22 | eqtrd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 24 | 13 20 15 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) |
| 25 | 10 12 19 24 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) |
| 26 | simprr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑦 ∈ 𝑧 ) | |
| 27 | 25 26 | eqeltrd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) |
| 28 | oveq2 | ⊢ ( 𝑎 = 𝑥 → ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ) | |
| 29 | 28 | oveq1d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 30 | 29 | eleq1d | ⊢ ( 𝑎 = 𝑥 → ( ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) ) |
| 31 | eqid | ⊢ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) | |
| 32 | 31 | mptpreima | ⊢ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) = { 𝑎 ∈ ( Base ‘ 𝐺 ) ∣ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } |
| 33 | 30 32 | elrab2 | ⊢ ( 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) ) |
| 34 | 19 27 33 | sylanbrc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) |
| 35 | eleq2 | ⊢ ( 𝑤 = ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) ) | |
| 36 | eleq2 | ⊢ ( 𝑤 = ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) ) | |
| 37 | 35 36 | imbi12d | ⊢ ( 𝑤 = ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → ( ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ↔ ( 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) ) ) |
| 38 | simplr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) | |
| 39 | tgptmd | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) | |
| 40 | 39 | ad3antrrr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝐺 ∈ TopMnd ) |
| 41 | 1 13 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 42 | 41 | ad3antrrr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 43 | 42 42 12 | cnmptc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 44 | 42 | cnmptid | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ 𝑎 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 45 | 1 15 | tgpsubcn | ⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 46 | 45 | ad3antrrr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 47 | 42 43 44 46 | cnmpt12f | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 48 | 42 42 19 | cnmptc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 49 | 1 20 40 42 47 48 | cnmpt1plusg | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 50 | simprl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑧 ∈ 𝐽 ) | |
| 51 | cnima | ⊢ ( ( ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) → ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ∈ 𝐽 ) | |
| 52 | 49 50 51 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ∈ 𝐽 ) |
| 53 | 37 38 52 | rspcdva | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) ) |
| 54 | 34 53 | mpd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) |
| 55 | oveq2 | ⊢ ( 𝑎 = 𝑦 → ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) = ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ) | |
| 56 | 55 | oveq1d | ⊢ ( 𝑎 = 𝑦 → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 57 | 56 | eleq1d | ⊢ ( 𝑎 = 𝑦 → ( ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) ) |
| 58 | 57 32 | elrab2 | ⊢ ( 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) ) |
| 59 | 58 | simprbi | ⊢ ( 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) |
| 60 | 54 59 | syl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) |
| 61 | 23 60 | eqeltrrd | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑧 ) |
| 62 | 61 | expr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧 ) ) |
| 63 | 8 62 | impbid | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 64 | 63 | ralrimiva | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) → ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 65 | 64 | ex | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) ) |
| 66 | 65 | imim1d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) → ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → 𝑥 = 𝑦 ) ) ) |
| 67 | 66 | ralimdvva | ⊢ ( 𝐺 ∈ TopGrp → ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → 𝑥 = 𝑦 ) ) ) |
| 68 | ist0-2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) ) ) | |
| 69 | 41 68 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
| 70 | ist1-2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → 𝑥 = 𝑦 ) ) ) | |
| 71 | 41 70 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → 𝑥 = 𝑦 ) ) ) |
| 72 | 67 69 71 | 3imtr4d | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Kol2 → 𝐽 ∈ Fre ) ) |
| 73 | 3 72 | impbid2 | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Fre ↔ 𝐽 ∈ Kol2 ) ) |
| 74 | 2 73 | bitrd | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2 ) ) |