This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A T_1 space is a T_0 space. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | t1t0 | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1top | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) | |
| 2 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 4 | biimp | ⊢ ( ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) | |
| 5 | 4 | ralimi | ⊢ ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) |
| 6 | 5 | imim1i | ⊢ ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) → ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) |
| 8 | 7 | ralimi | ⊢ ( ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) |
| 9 | 8 | a1i | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 10 | ist1-2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) | |
| 11 | ist0-2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ ∪ 𝐽 ∀ 𝑦 ∈ ∪ 𝐽 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) | |
| 12 | 9 10 11 | 3imtr4d | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 ) ) |
| 13 | 3 12 | mpcom | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 ) |