This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tgpt1.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| Assertion | tgpt1 | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Fre ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpt1.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | haust1 | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Fre ) | |
| 3 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 4 5 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 8 | 1 4 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 9 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 11 | 7 10 | eleqtrd | ⊢ ( 𝐺 ∈ TopGrp → ( 0g ‘ 𝐺 ) ∈ ∪ 𝐽 ) |
| 12 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | 12 | t1sncld | ⊢ ( ( 𝐽 ∈ Fre ∧ ( 0g ‘ 𝐺 ) ∈ ∪ 𝐽 ) → { ( 0g ‘ 𝐺 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 14 | 13 | expcom | ⊢ ( ( 0g ‘ 𝐺 ) ∈ ∪ 𝐽 → ( 𝐽 ∈ Fre → { ( 0g ‘ 𝐺 ) } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 15 | 11 14 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Fre → { ( 0g ‘ 𝐺 ) } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 16 | 5 1 | tgphaus | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ { ( 0g ‘ 𝐺 ) } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 17 | 15 16 | sylibrd | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Fre → 𝐽 ∈ Haus ) ) |
| 18 | 2 17 | impbid2 | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Fre ) ) |