This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate characterization of T_1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010) (Proof shortened by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ist1-2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | ist1 | ⊢ ( 𝐽 ∈ Fre ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ ∪ 𝐽 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 4 | 3 | baib | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Fre ↔ ∀ 𝑦 ∈ ∪ 𝐽 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑦 ∈ ∪ 𝐽 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 6 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 7 | 6 | raleqdv | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑦 ∈ ∪ 𝐽 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 8 | 1 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 9 | eltop2 | ⊢ ( 𝐽 ∈ Top → ( ( ∪ 𝐽 ∖ { 𝑦 } ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ∪ 𝐽 ∖ { 𝑦 } ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
| 11 | 6 | eleq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ 𝐽 ) ) |
| 12 | 11 | biimpa | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ∪ 𝐽 ) |
| 13 | 12 | snssd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → { 𝑦 } ⊆ ∪ 𝐽 ) |
| 14 | 2 | iscld2 | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑦 } ⊆ ∪ 𝐽 ) → ( { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ { 𝑦 } ) ∈ 𝐽 ) ) |
| 15 | 8 13 14 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ( ∪ 𝐽 ∖ { 𝑦 } ) ∈ 𝐽 ) ) |
| 16 | 6 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 17 | 16 | eleq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
| 18 | 17 | imbi1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ↔ ( 𝑥 ∈ ∪ 𝐽 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) ) |
| 19 | con1b | ⊢ ( ( ¬ 𝑥 = 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( ¬ ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) → 𝑥 = 𝑦 ) ) | |
| 20 | df-ne | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) | |
| 21 | 20 | imbi1i | ⊢ ( ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( ¬ 𝑥 = 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
| 22 | disjsn | ⊢ ( ( 𝑜 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝑜 ) | |
| 23 | elssuni | ⊢ ( 𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽 ) | |
| 24 | reldisj | ⊢ ( 𝑜 ⊆ ∪ 𝐽 → ( ( 𝑜 ∩ { 𝑦 } ) = ∅ ↔ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑜 ∈ 𝐽 → ( ( 𝑜 ∩ { 𝑦 } ) = ∅ ↔ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) |
| 26 | 22 25 | bitr3id | ⊢ ( 𝑜 ∈ 𝐽 → ( ¬ 𝑦 ∈ 𝑜 ↔ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) |
| 27 | 26 | anbi2d | ⊢ ( 𝑜 ∈ 𝐽 → ( ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ↔ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
| 28 | 27 | rexbiia | ⊢ ( ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ↔ ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) |
| 29 | rexanali | ⊢ ( ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜 ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) | |
| 30 | 28 29 | bitr3i | ⊢ ( ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ↔ ¬ ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) |
| 31 | 30 | con2bii | ⊢ ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ¬ ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) |
| 32 | 31 | imbi1i | ⊢ ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ¬ ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) → 𝑥 = 𝑦 ) ) |
| 33 | 19 21 32 | 3bitr4ri | ⊢ ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
| 34 | 33 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝑋 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑋 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) |
| 35 | eldifsn | ⊢ ( 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) | |
| 36 | 35 | imbi1i | ⊢ ( ( 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( ( 𝑥 ∈ ∪ 𝐽 ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
| 37 | impexp | ⊢ ( ( ( 𝑥 ∈ ∪ 𝐽 ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( 𝑥 ∈ ∪ 𝐽 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) | |
| 38 | 36 37 | bitri | ⊢ ( ( 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ↔ ( 𝑥 ∈ ∪ 𝐽 → ( 𝑥 ≠ 𝑦 → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) |
| 39 | 18 34 38 | 3bitr4g | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) → ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) ) |
| 40 | 39 | ralbidv2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ ( ∪ 𝐽 ∖ { 𝑦 } ) ∃ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( ∪ 𝐽 ∖ { 𝑦 } ) ) ) ) |
| 41 | 10 15 40 | 3bitr4d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 42 | 41 | ralbidva | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 43 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) | |
| 44 | 42 43 | bitrdi | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑋 { 𝑦 } ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 45 | 5 7 44 | 3bitr2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |