This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1omvdcnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( ◡ 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnvfvb | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ) ) | |
| 2 | 1 | 3anidm23 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 3 | 2 | bicomd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
| 4 | 3 | necon3bid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
| 5 | 4 | rabbidva | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → { 𝑥 ∈ 𝐴 ∣ ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝑥 } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
| 6 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) | |
| 7 | f1ofn | ⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 Fn 𝐴 ) | |
| 8 | fndifnfp | ⊢ ( ◡ 𝐹 Fn 𝐴 → dom ( ◡ 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( ◡ 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( ◡ 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
| 10 | f1ofn | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 Fn 𝐴 ) | |
| 11 | fndifnfp | ⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
| 13 | 5 9 12 | 3eqtr4d | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( ◡ 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) ) |