This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgrpd.s | ⊢ ( 𝜑 → 𝑆 = ( 𝐼 ↾s 𝐷 ) ) | |
| issubgrpd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐼 ) ) | ||
| issubgrpd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐼 ) ) | ||
| issubgrpd.ss | ⊢ ( 𝜑 → 𝐷 ⊆ ( Base ‘ 𝐼 ) ) | ||
| issubgrpd.zcl | ⊢ ( 𝜑 → 0 ∈ 𝐷 ) | ||
| issubgrpd.acl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) | ||
| issubgrpd.ncl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) | ||
| issubgrpd.g | ⊢ ( 𝜑 → 𝐼 ∈ Grp ) | ||
| Assertion | issubgrpd2 | ⊢ ( 𝜑 → 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgrpd.s | ⊢ ( 𝜑 → 𝑆 = ( 𝐼 ↾s 𝐷 ) ) | |
| 2 | issubgrpd.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐼 ) ) | |
| 3 | issubgrpd.p | ⊢ ( 𝜑 → + = ( +g ‘ 𝐼 ) ) | |
| 4 | issubgrpd.ss | ⊢ ( 𝜑 → 𝐷 ⊆ ( Base ‘ 𝐼 ) ) | |
| 5 | issubgrpd.zcl | ⊢ ( 𝜑 → 0 ∈ 𝐷 ) | |
| 6 | issubgrpd.acl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) | |
| 7 | issubgrpd.ncl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) | |
| 8 | issubgrpd.g | ⊢ ( 𝜑 → 𝐼 ∈ Grp ) | |
| 9 | 5 | ne0d | ⊢ ( 𝜑 → 𝐷 ≠ ∅ ) |
| 10 | 3 | oveqd | ⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ) |
| 12 | 6 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) |
| 13 | 11 12 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
| 14 | 13 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
| 15 | 14 7 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) | |
| 18 | eqid | ⊢ ( +g ‘ 𝐼 ) = ( +g ‘ 𝐼 ) | |
| 19 | eqid | ⊢ ( invg ‘ 𝐼 ) = ( invg ‘ 𝐼 ) | |
| 20 | 17 18 19 | issubg2 | ⊢ ( 𝐼 ∈ Grp → ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ↔ ( 𝐷 ⊆ ( Base ‘ 𝐼 ) ∧ 𝐷 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐷 ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) ) ) |
| 21 | 8 20 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ↔ ( 𝐷 ⊆ ( Base ‘ 𝐼 ) ∧ 𝐷 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐷 ( ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( +g ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ∧ ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) ) ) ) |
| 22 | 4 9 16 21 | mpbir3and | ⊢ ( 𝜑 → 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ) |