This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| syl3anb.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | ||
| syl3anb.3 | ⊢ ( 𝜏 ↔ 𝜂 ) | ||
| syl3anb.4 | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) | ||
| Assertion | syl3anb | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | syl3anb.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | |
| 3 | syl3anb.3 | ⊢ ( 𝜏 ↔ 𝜂 ) | |
| 4 | syl3anb.4 | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) | |
| 5 | 1 2 3 | 3anbi123i | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ↔ ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) |
| 6 | 5 4 | sylbi | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |