This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If every term in a sum is divisible by N , then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumdvds.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumdvds.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| fsumdvds.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | ||
| fsumdvds.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ∥ 𝐵 ) | ||
| Assertion | fsumdvds | ⊢ ( 𝜑 → 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumdvds.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumdvds.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 3 | fsumdvds.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 4 | fsumdvds.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ∥ 𝐵 ) | |
| 5 | 0z | ⊢ 0 ∈ ℤ | |
| 6 | dvds0 | ⊢ ( 0 ∈ ℤ → 0 ∥ 0 ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 0 ∥ 0 ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 9 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 = 0 ) | |
| 10 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ∥ 𝐵 ) |
| 11 | 9 10 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ∥ 𝐵 ) |
| 12 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 13 | 0dvds | ⊢ ( 𝐵 ∈ ℤ → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
| 15 | 11 14 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 = 0 ) |
| 16 | 15 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 0 ) |
| 17 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝐴 ∈ Fin ) |
| 18 | 17 | olcd | ⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝐴 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝐴 ∈ Fin ) ) |
| 19 | sumz | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝐴 ∈ Fin ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → Σ 𝑘 ∈ 𝐴 0 = 0 ) |
| 21 | 16 20 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → Σ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 22 | 7 8 21 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝐴 ∈ Fin ) |
| 24 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℤ ) |
| 25 | 24 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℂ ) |
| 26 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 27 | 26 | zcnd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 28 | simpr | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝑁 ≠ 0 ) | |
| 29 | 23 25 27 28 | fsumdivc | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝑁 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 / 𝑁 ) ) |
| 30 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ∥ 𝐵 ) |
| 31 | 24 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ∈ ℤ ) |
| 32 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑁 ≠ 0 ) | |
| 33 | dvdsval2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝑁 ∥ 𝐵 ↔ ( 𝐵 / 𝑁 ) ∈ ℤ ) ) | |
| 34 | 31 32 26 33 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑁 ∥ 𝐵 ↔ ( 𝐵 / 𝑁 ) ∈ ℤ ) ) |
| 35 | 30 34 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑁 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 / 𝑁 ) ∈ ℤ ) |
| 36 | 23 35 | fsumzcl | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → Σ 𝑘 ∈ 𝐴 ( 𝐵 / 𝑁 ) ∈ ℤ ) |
| 37 | 29 36 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝑁 ) ∈ ℤ ) |
| 38 | 1 3 | fsumzcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| 40 | dvdsval2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ( 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝑁 ) ∈ ℤ ) ) | |
| 41 | 24 28 39 40 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → ( 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 / 𝑁 ) ∈ ℤ ) ) |
| 42 | 37 41 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑁 ≠ 0 ) → 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 43 | 22 42 | pm2.61dane | ⊢ ( 𝜑 → 𝑁 ∥ Σ 𝑘 ∈ 𝐴 𝐵 ) |