This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a set with an equivalence relation is the sum of the cardinalities of its equivalence classes. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qshash.1 | ⊢ ( 𝜑 → ∼ Er 𝐴 ) | |
| qshash.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| Assertion | qshash | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = Σ 𝑥 ∈ ( 𝐴 / ∼ ) ( ♯ ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qshash.1 | ⊢ ( 𝜑 → ∼ Er 𝐴 ) | |
| 2 | qshash.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | erex | ⊢ ( ∼ Er 𝐴 → ( 𝐴 ∈ Fin → ∼ ∈ V ) ) | |
| 4 | 1 2 3 | sylc | ⊢ ( 𝜑 → ∼ ∈ V ) |
| 5 | 1 4 | uniqs2 | ⊢ ( 𝜑 → ∪ ( 𝐴 / ∼ ) = 𝐴 ) |
| 6 | 5 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ ∪ ( 𝐴 / ∼ ) ) = ( ♯ ‘ 𝐴 ) ) |
| 7 | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) | |
| 8 | 2 7 | sylib | ⊢ ( 𝜑 → 𝒫 𝐴 ∈ Fin ) |
| 9 | 1 | qsss | ⊢ ( 𝜑 → ( 𝐴 / ∼ ) ⊆ 𝒫 𝐴 ) |
| 10 | 8 9 | ssfid | ⊢ ( 𝜑 → ( 𝐴 / ∼ ) ∈ Fin ) |
| 11 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) | |
| 12 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 ∈ Fin ) | |
| 13 | 12 | ex | ⊢ ( 𝐴 ∈ Fin → ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ Fin ) ) |
| 14 | 2 11 13 | syl2im | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ Fin ) ) |
| 15 | 14 | ssrdv | ⊢ ( 𝜑 → 𝒫 𝐴 ⊆ Fin ) |
| 16 | 9 15 | sstrd | ⊢ ( 𝜑 → ( 𝐴 / ∼ ) ⊆ Fin ) |
| 17 | qsdisj2 | ⊢ ( ∼ Er 𝐴 → Disj 𝑥 ∈ ( 𝐴 / ∼ ) 𝑥 ) | |
| 18 | 1 17 | syl | ⊢ ( 𝜑 → Disj 𝑥 ∈ ( 𝐴 / ∼ ) 𝑥 ) |
| 19 | 10 16 18 | hashuni | ⊢ ( 𝜑 → ( ♯ ‘ ∪ ( 𝐴 / ∼ ) ) = Σ 𝑥 ∈ ( 𝐴 / ∼ ) ( ♯ ‘ 𝑥 ) ) |
| 20 | 6 19 | eqtr3d | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = Σ 𝑥 ∈ ( 𝐴 / ∼ ) ( ♯ ‘ 𝑥 ) ) |