This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sranlm.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| Assertion | sranlm | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ NrmMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sranlm.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| 2 | nrgngp | ⊢ ( 𝑊 ∈ NrmRing → 𝑊 ∈ NrmGrp ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑊 ∈ NrmGrp ) |
| 4 | eqidd | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
| 5 | 1 | a1i | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | 6 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 9 | 5 8 | srabase | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 10 | 5 8 | sraaddg | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |
| 11 | 10 | oveqdr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
| 12 | 5 8 | srads | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐴 ) ) |
| 13 | 12 | reseq1d | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝐴 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
| 14 | 5 8 | sratopn | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) ) |
| 15 | 4 9 11 13 14 | ngppropd | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ∈ NrmGrp ↔ 𝐴 ∈ NrmGrp ) ) |
| 16 | 3 15 | mpbid | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ NrmGrp ) |
| 17 | 1 | sralmod | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ LMod ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ LMod ) |
| 19 | 5 8 | srasca | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 20 | eqid | ⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) | |
| 21 | 20 | subrgnrg | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑆 ) ∈ NrmRing ) |
| 22 | 19 21 | eqeltrrd | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Scalar ‘ 𝐴 ) ∈ NrmRing ) |
| 23 | 16 18 22 | 3jca | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ ( Scalar ‘ 𝐴 ) ∈ NrmRing ) ) |
| 24 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 25 | eqid | ⊢ ( AbsVal ‘ 𝑊 ) = ( AbsVal ‘ 𝑊 ) | |
| 26 | 24 25 | nrgabv | ⊢ ( 𝑊 ∈ NrmRing → ( norm ‘ 𝑊 ) ∈ ( AbsVal ‘ 𝑊 ) ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( norm ‘ 𝑊 ) ∈ ( AbsVal ‘ 𝑊 ) ) |
| 28 | 8 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 29 | simprl | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | |
| 30 | 20 | subrgbas | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 32 | 19 | fveq2d | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 33 | 31 32 | eqtrd | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑆 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 35 | 29 34 | eleqtrrd | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ 𝑆 ) |
| 36 | 28 35 | sseldd | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 37 | simprr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) | |
| 38 | 9 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 39 | 37 38 | eleqtrrd | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 40 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 41 | 25 6 40 | abvmul | ⊢ ( ( ( norm ‘ 𝑊 ) ∈ ( AbsVal ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 42 | 27 36 39 41 | syl3anc | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 43 | 9 10 12 | nmpropd | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( norm ‘ 𝑊 ) = ( norm ‘ 𝐴 ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( norm ‘ 𝑊 ) = ( norm ‘ 𝐴 ) ) |
| 45 | 5 8 | sravsca | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 46 | 45 | oveqdr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) |
| 47 | 44 46 | fveq12d | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) = ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) ) |
| 48 | 42 47 | eqtr3d | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) = ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) ) |
| 49 | subrgsubg | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) | |
| 50 | 49 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 51 | eqid | ⊢ ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) = ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) | |
| 52 | 20 24 51 | subgnm2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 53 | 50 35 52 | syl2anc | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 54 | 19 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 55 | 54 | fveq2d | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) = ( norm ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 56 | 55 | fveq1d | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ ( 𝑊 ↾s 𝑆 ) ) ‘ 𝑥 ) = ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) ) |
| 57 | 53 56 | eqtr3d | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) = ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) ) |
| 58 | 44 | fveq1d | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) = ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) |
| 59 | 57 58 | oveq12d | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
| 60 | 48 59 | eqtr3d | ⊢ ( ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ) → ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
| 61 | 60 | ralrimivva | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
| 62 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 63 | eqid | ⊢ ( norm ‘ 𝐴 ) = ( norm ‘ 𝐴 ) | |
| 64 | eqid | ⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) | |
| 65 | eqid | ⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) | |
| 66 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) | |
| 67 | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝐴 ) ) = ( norm ‘ ( Scalar ‘ 𝐴 ) ) | |
| 68 | 62 63 64 65 66 67 | isnlm | ⊢ ( 𝐴 ∈ NrmMod ↔ ( ( 𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ ( Scalar ‘ 𝐴 ) ∈ NrmRing ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ( ( norm ‘ 𝐴 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝐴 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝐴 ) ‘ 𝑦 ) ) ) ) |
| 69 | 23 61 68 | sylanbrc | ⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ NrmMod ) |