This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
| Assertion | sraaddg | ⊢ ( 𝜑 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| 2 | srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
| 3 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 4 | scandxnplusgndx | ⊢ ( Scalar ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 5 | vscandxnplusgndx | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 6 | ipndxnplusgndx | ⊢ ( ·𝑖 ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 7 | 1 2 3 4 5 6 | sralem | ⊢ ( 𝜑 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |