This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
| Assertion | srasca | ⊢ ( 𝜑 → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| 2 | srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
| 3 | scaid | ⊢ Scalar = Slot ( Scalar ‘ ndx ) | |
| 4 | vscandxnscandx | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( Scalar ‘ ndx ) | |
| 5 | 4 | necomi | ⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 6 | 3 5 | setsnid | ⊢ ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) = ( Scalar ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 7 | slotsdifipndx | ⊢ ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ∧ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) | |
| 8 | 7 | simpri | ⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
| 9 | 3 8 | setsnid | ⊢ ( Scalar ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) = ( Scalar ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 10 | 6 9 | eqtri | ⊢ ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) = ( Scalar ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 11 | ovexd | ⊢ ( 𝜑 → ( 𝑊 ↾s 𝑆 ) ∈ V ) | |
| 12 | 3 | setsid | ⊢ ( ( 𝑊 ∈ V ∧ ( 𝑊 ↾s 𝑆 ) ∈ V ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) ) |
| 13 | 11 12 | sylan2 | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) ) |
| 14 | 1 | adantl | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 15 | sraval | ⊢ ( ( 𝑊 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) | |
| 16 | 2 15 | sylan2 | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 17 | 14 16 | eqtrd | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) ) |
| 19 | 10 13 18 | 3eqtr4a | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 20 | 3 | str0 | ⊢ ∅ = ( Scalar ‘ ∅ ) |
| 21 | reldmress | ⊢ Rel dom ↾s | |
| 22 | 21 | ovprc1 | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝑆 ) = ∅ ) |
| 23 | 22 | adantr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ∅ ) |
| 24 | fv2prc | ⊢ ( ¬ 𝑊 ∈ V → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ∅ ) | |
| 25 | 1 24 | sylan9eqr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ∅ ) |
| 26 | 25 | fveq2d | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ∅ ) ) |
| 27 | 20 23 26 | 3eqtr4a | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 28 | 19 27 | pm2.61ian | ⊢ ( 𝜑 → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |