This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmpropd.1 | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) | |
| nmpropd.2 | ⊢ ( 𝜑 → ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) ) | ||
| nmpropd.3 | ⊢ ( 𝜑 → ( dist ‘ 𝐾 ) = ( dist ‘ 𝐿 ) ) | ||
| Assertion | nmpropd | ⊢ ( 𝜑 → ( norm ‘ 𝐾 ) = ( norm ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmpropd.1 | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) | |
| 2 | nmpropd.2 | ⊢ ( 𝜑 → ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) ) | |
| 3 | nmpropd.3 | ⊢ ( 𝜑 → ( dist ‘ 𝐾 ) = ( dist ‘ 𝐿 ) ) | |
| 4 | eqidd | ⊢ ( 𝜑 → 𝑥 = 𝑥 ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) | |
| 6 | 2 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 7 | 5 1 6 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 8 | 3 4 7 | oveq123d | ⊢ ( 𝜑 → ( 𝑥 ( dist ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) = ( 𝑥 ( dist ‘ 𝐿 ) ( 0g ‘ 𝐿 ) ) ) |
| 9 | 1 8 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑥 ( dist ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑥 ( dist ‘ 𝐿 ) ( 0g ‘ 𝐿 ) ) ) ) |
| 10 | eqid | ⊢ ( norm ‘ 𝐾 ) = ( norm ‘ 𝐾 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 12 | eqid | ⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) | |
| 13 | eqid | ⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) | |
| 14 | 10 11 12 13 | nmfval | ⊢ ( norm ‘ 𝐾 ) = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑥 ( dist ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) |
| 15 | eqid | ⊢ ( norm ‘ 𝐿 ) = ( norm ‘ 𝐿 ) | |
| 16 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 17 | eqid | ⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) | |
| 18 | eqid | ⊢ ( dist ‘ 𝐿 ) = ( dist ‘ 𝐿 ) | |
| 19 | 15 16 17 18 | nmfval | ⊢ ( norm ‘ 𝐿 ) = ( 𝑥 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑥 ( dist ‘ 𝐿 ) ( 0g ‘ 𝐿 ) ) ) |
| 20 | 9 14 19 | 3eqtr4g | ⊢ ( 𝜑 → ( norm ‘ 𝐾 ) = ( norm ‘ 𝐿 ) ) |