This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed ring is an absolute value. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnrg.1 | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | |
| isnrg.2 | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | ||
| Assertion | nrgabv | ⊢ ( 𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnrg.1 | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | |
| 2 | isnrg.2 | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 3 | 1 2 | isnrg | ⊢ ( 𝑅 ∈ NrmRing ↔ ( 𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴 ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴 ) |