This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
| Assertion | sravsca | ⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| 2 | srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
| 3 | ovex | ⊢ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ∈ V | |
| 4 | fvex | ⊢ ( .r ‘ 𝑊 ) ∈ V | |
| 5 | vscaid | ⊢ ·𝑠 = Slot ( ·𝑠 ‘ ndx ) | |
| 6 | 5 | setsid | ⊢ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ∈ V ∧ ( .r ‘ 𝑊 ) ∈ V ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) ) |
| 7 | 3 4 6 | mp2an | ⊢ ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 8 | slotsdifipndx | ⊢ ( ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ∧ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) | |
| 9 | 8 | simpli | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
| 10 | 5 9 | setsnid | ⊢ ( ·𝑠 ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) = ( ·𝑠 ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 11 | 7 10 | eqtri | ⊢ ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 12 | 1 | adantl | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 13 | sraval | ⊢ ( ( 𝑊 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) | |
| 14 | 2 13 | sylan2 | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 15 | 12 14 | eqtrd | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) ) |
| 17 | 11 16 | eqtr4id | ⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 18 | 5 | str0 | ⊢ ∅ = ( ·𝑠 ‘ ∅ ) |
| 19 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( .r ‘ 𝑊 ) = ∅ ) | |
| 20 | 19 | adantr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( .r ‘ 𝑊 ) = ∅ ) |
| 21 | fv2prc | ⊢ ( ¬ 𝑊 ∈ V → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ∅ ) | |
| 22 | 1 21 | sylan9eqr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ∅ ) |
| 23 | 22 | fveq2d | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ ∅ ) ) |
| 24 | 18 20 23 | 3eqtr4a | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 25 | 17 24 | pm2.61ian | ⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |