This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sranlm.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| Assertion | sranlm | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> A e. NrmMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sranlm.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| 2 | nrgngp | |- ( W e. NrmRing -> W e. NrmGrp ) |
|
| 3 | 2 | adantr | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> W e. NrmGrp ) |
| 4 | eqidd | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Base ` W ) ) |
|
| 5 | 1 | a1i | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> A = ( ( subringAlg ` W ) ` S ) ) |
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | 6 | subrgss | |- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
| 8 | 7 | adantl | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> S C_ ( Base ` W ) ) |
| 9 | 5 8 | srabase | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Base ` A ) ) |
| 10 | 5 8 | sraaddg | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( +g ` W ) = ( +g ` A ) ) |
| 11 | 10 | oveqdr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` A ) y ) ) |
| 12 | 5 8 | srads | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( dist ` W ) = ( dist ` A ) ) |
| 13 | 12 | reseq1d | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` A ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
| 14 | 5 8 | sratopn | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( TopOpen ` W ) = ( TopOpen ` A ) ) |
| 15 | 4 9 11 13 14 | ngppropd | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( W e. NrmGrp <-> A e. NrmGrp ) ) |
| 16 | 3 15 | mpbid | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> A e. NrmGrp ) |
| 17 | 1 | sralmod | |- ( S e. ( SubRing ` W ) -> A e. LMod ) |
| 18 | 17 | adantl | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> A e. LMod ) |
| 19 | 5 8 | srasca | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( W |`s S ) = ( Scalar ` A ) ) |
| 20 | eqid | |- ( W |`s S ) = ( W |`s S ) |
|
| 21 | 20 | subrgnrg | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( W |`s S ) e. NrmRing ) |
| 22 | 19 21 | eqeltrrd | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( Scalar ` A ) e. NrmRing ) |
| 23 | 16 18 22 | 3jca | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( A e. NrmGrp /\ A e. LMod /\ ( Scalar ` A ) e. NrmRing ) ) |
| 24 | eqid | |- ( norm ` W ) = ( norm ` W ) |
|
| 25 | eqid | |- ( AbsVal ` W ) = ( AbsVal ` W ) |
|
| 26 | 24 25 | nrgabv | |- ( W e. NrmRing -> ( norm ` W ) e. ( AbsVal ` W ) ) |
| 27 | 26 | ad2antrr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( norm ` W ) e. ( AbsVal ` W ) ) |
| 28 | 8 | adantr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> S C_ ( Base ` W ) ) |
| 29 | simprl | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` ( Scalar ` A ) ) ) |
|
| 30 | 20 | subrgbas | |- ( S e. ( SubRing ` W ) -> S = ( Base ` ( W |`s S ) ) ) |
| 31 | 30 | adantl | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> S = ( Base ` ( W |`s S ) ) ) |
| 32 | 19 | fveq2d | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( Base ` ( W |`s S ) ) = ( Base ` ( Scalar ` A ) ) ) |
| 33 | 31 32 | eqtrd | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> S = ( Base ` ( Scalar ` A ) ) ) |
| 34 | 33 | adantr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> S = ( Base ` ( Scalar ` A ) ) ) |
| 35 | 29 34 | eleqtrrd | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> x e. S ) |
| 36 | 28 35 | sseldd | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` W ) ) |
| 37 | simprr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` A ) ) |
|
| 38 | 9 | adantr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( Base ` W ) = ( Base ` A ) ) |
| 39 | 37 38 | eleqtrrd | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` W ) ) |
| 40 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 41 | 25 6 40 | abvmul | |- ( ( ( norm ` W ) e. ( AbsVal ` W ) /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( ( norm ` W ) ` ( x ( .r ` W ) y ) ) = ( ( ( norm ` W ) ` x ) x. ( ( norm ` W ) ` y ) ) ) |
| 42 | 27 36 39 41 | syl3anc | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( ( norm ` W ) ` ( x ( .r ` W ) y ) ) = ( ( ( norm ` W ) ` x ) x. ( ( norm ` W ) ` y ) ) ) |
| 43 | 9 10 12 | nmpropd | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( norm ` W ) = ( norm ` A ) ) |
| 44 | 43 | adantr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( norm ` W ) = ( norm ` A ) ) |
| 45 | 5 8 | sravsca | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> ( .r ` W ) = ( .s ` A ) ) |
| 46 | 45 | oveqdr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( x ( .r ` W ) y ) = ( x ( .s ` A ) y ) ) |
| 47 | 44 46 | fveq12d | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( ( norm ` W ) ` ( x ( .r ` W ) y ) ) = ( ( norm ` A ) ` ( x ( .s ` A ) y ) ) ) |
| 48 | 42 47 | eqtr3d | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( ( ( norm ` W ) ` x ) x. ( ( norm ` W ) ` y ) ) = ( ( norm ` A ) ` ( x ( .s ` A ) y ) ) ) |
| 49 | subrgsubg | |- ( S e. ( SubRing ` W ) -> S e. ( SubGrp ` W ) ) |
|
| 50 | 49 | ad2antlr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> S e. ( SubGrp ` W ) ) |
| 51 | eqid | |- ( norm ` ( W |`s S ) ) = ( norm ` ( W |`s S ) ) |
|
| 52 | 20 24 51 | subgnm2 | |- ( ( S e. ( SubGrp ` W ) /\ x e. S ) -> ( ( norm ` ( W |`s S ) ) ` x ) = ( ( norm ` W ) ` x ) ) |
| 53 | 50 35 52 | syl2anc | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( ( norm ` ( W |`s S ) ) ` x ) = ( ( norm ` W ) ` x ) ) |
| 54 | 19 | adantr | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( W |`s S ) = ( Scalar ` A ) ) |
| 55 | 54 | fveq2d | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( norm ` ( W |`s S ) ) = ( norm ` ( Scalar ` A ) ) ) |
| 56 | 55 | fveq1d | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( ( norm ` ( W |`s S ) ) ` x ) = ( ( norm ` ( Scalar ` A ) ) ` x ) ) |
| 57 | 53 56 | eqtr3d | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( ( norm ` W ) ` x ) = ( ( norm ` ( Scalar ` A ) ) ` x ) ) |
| 58 | 44 | fveq1d | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( ( norm ` W ) ` y ) = ( ( norm ` A ) ` y ) ) |
| 59 | 57 58 | oveq12d | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( ( ( norm ` W ) ` x ) x. ( ( norm ` W ) ` y ) ) = ( ( ( norm ` ( Scalar ` A ) ) ` x ) x. ( ( norm ` A ) ` y ) ) ) |
| 60 | 48 59 | eqtr3d | |- ( ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` ( Scalar ` A ) ) /\ y e. ( Base ` A ) ) ) -> ( ( norm ` A ) ` ( x ( .s ` A ) y ) ) = ( ( ( norm ` ( Scalar ` A ) ) ` x ) x. ( ( norm ` A ) ` y ) ) ) |
| 61 | 60 | ralrimivva | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> A. x e. ( Base ` ( Scalar ` A ) ) A. y e. ( Base ` A ) ( ( norm ` A ) ` ( x ( .s ` A ) y ) ) = ( ( ( norm ` ( Scalar ` A ) ) ` x ) x. ( ( norm ` A ) ` y ) ) ) |
| 62 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 63 | eqid | |- ( norm ` A ) = ( norm ` A ) |
|
| 64 | eqid | |- ( .s ` A ) = ( .s ` A ) |
|
| 65 | eqid | |- ( Scalar ` A ) = ( Scalar ` A ) |
|
| 66 | eqid | |- ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) |
|
| 67 | eqid | |- ( norm ` ( Scalar ` A ) ) = ( norm ` ( Scalar ` A ) ) |
|
| 68 | 62 63 64 65 66 67 | isnlm | |- ( A e. NrmMod <-> ( ( A e. NrmGrp /\ A e. LMod /\ ( Scalar ` A ) e. NrmRing ) /\ A. x e. ( Base ` ( Scalar ` A ) ) A. y e. ( Base ` A ) ( ( norm ` A ) ` ( x ( .s ` A ) y ) ) = ( ( ( norm ` ( Scalar ` A ) ) ` x ) x. ( ( norm ` A ) ` y ) ) ) ) |
| 69 | 23 61 68 | sylanbrc | |- ( ( W e. NrmRing /\ S e. ( SubRing ` W ) ) -> A e. NrmMod ) |