This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sralmod.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| Assertion | sralmod | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sralmod.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| 2 | 1 | a1i | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 4 | 3 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 5 | 2 4 | srabase | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 6 | 2 4 | sraaddg | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |
| 7 | 2 4 | srasca | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 8 | 2 4 | sravsca | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 9 | eqid | ⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) | |
| 10 | 9 3 | ressbas | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 11 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 12 | 9 11 | ressplusg | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( +g ‘ 𝑊 ) = ( +g ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 13 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 14 | 9 13 | ressmulr | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( .r ‘ 𝑊 ) = ( .r ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 15 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 16 | 9 15 | subrg1 | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r ‘ 𝑊 ) = ( 1r ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 17 | 9 | subrgring | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑊 ↾s 𝑆 ) ∈ Ring ) |
| 18 | subrgrcl | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑊 ∈ Ring ) | |
| 19 | ringgrp | ⊢ ( 𝑊 ∈ Ring → 𝑊 ∈ Grp ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑊 ∈ Grp ) |
| 21 | eqidd | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
| 22 | 6 | oveqdr | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
| 23 | 21 5 22 | grppropd | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑊 ∈ Grp ↔ 𝐴 ∈ Grp ) ) |
| 24 | 20 23 | mpbid | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ Grp ) |
| 25 | 18 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ Ring ) |
| 26 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) | |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 28 | simp3 | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 29 | 3 13 | ringcl | ⊢ ( ( 𝑊 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 30 | 25 27 28 29 | syl3anc | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 31 | 18 | adantr | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ Ring ) |
| 32 | simpr1 | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ) | |
| 33 | 32 | elin2d | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 34 | simpr2 | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 35 | simpr3 | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) | |
| 36 | 3 11 13 | ringdi | ⊢ ( ( 𝑊 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 37 | 31 33 34 35 36 | syl13anc | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 38 | 18 | adantr | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ Ring ) |
| 39 | simpr1 | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ) | |
| 40 | 39 | elin2d | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 41 | simpr2 | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ) | |
| 42 | 41 | elin2d | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 43 | simpr3 | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) | |
| 44 | 3 11 13 | ringdir | ⊢ ( ( 𝑊 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ( +g ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 45 | 38 40 42 43 44 | syl13anc | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ( +g ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 46 | 3 13 | ringass | ⊢ ( ( 𝑊 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 47 | 38 40 42 43 46 | syl13anc | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 48 | 3 13 15 | ringlidm | ⊢ ( ( 𝑊 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 1r ‘ 𝑊 ) ( .r ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
| 49 | 18 48 | sylan | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 1r ‘ 𝑊 ) ( .r ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
| 50 | 5 6 7 8 10 12 14 16 17 24 30 37 45 47 49 | islmodd | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ LMod ) |