This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine and cosine of _pi / 6 . (Contributed by Paul Chapman, 25-Jan-2008) (Revised by Wolf Lammen, 24-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincos6thpi | ⊢ ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | ⊢ 2 ∈ ℂ | |
| 2 | pire | ⊢ π ∈ ℝ | |
| 3 | 6re | ⊢ 6 ∈ ℝ | |
| 4 | 6pos | ⊢ 0 < 6 | |
| 5 | 3 4 | gt0ne0ii | ⊢ 6 ≠ 0 |
| 6 | 2 3 5 | redivcli | ⊢ ( π / 6 ) ∈ ℝ |
| 7 | 6 | recni | ⊢ ( π / 6 ) ∈ ℂ |
| 8 | sincl | ⊢ ( ( π / 6 ) ∈ ℂ → ( sin ‘ ( π / 6 ) ) ∈ ℂ ) | |
| 9 | 7 8 | ax-mp | ⊢ ( sin ‘ ( π / 6 ) ) ∈ ℂ |
| 10 | 2ne0 | ⊢ 2 ≠ 0 | |
| 11 | recoscl | ⊢ ( ( π / 6 ) ∈ ℝ → ( cos ‘ ( π / 6 ) ) ∈ ℝ ) | |
| 12 | 6 11 | ax-mp | ⊢ ( cos ‘ ( π / 6 ) ) ∈ ℝ |
| 13 | 12 | recni | ⊢ ( cos ‘ ( π / 6 ) ) ∈ ℂ |
| 14 | 1 9 13 | mulassi | ⊢ ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( 2 · ( ( sin ‘ ( π / 6 ) ) · ( cos ‘ ( π / 6 ) ) ) ) |
| 15 | sin2t | ⊢ ( ( π / 6 ) ∈ ℂ → ( sin ‘ ( 2 · ( π / 6 ) ) ) = ( 2 · ( ( sin ‘ ( π / 6 ) ) · ( cos ‘ ( π / 6 ) ) ) ) ) | |
| 16 | 7 15 | ax-mp | ⊢ ( sin ‘ ( 2 · ( π / 6 ) ) ) = ( 2 · ( ( sin ‘ ( π / 6 ) ) · ( cos ‘ ( π / 6 ) ) ) ) |
| 17 | 14 16 | eqtr4i | ⊢ ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( sin ‘ ( 2 · ( π / 6 ) ) ) |
| 18 | 3cn | ⊢ 3 ∈ ℂ | |
| 19 | 3ne0 | ⊢ 3 ≠ 0 | |
| 20 | 1 18 19 | divcli | ⊢ ( 2 / 3 ) ∈ ℂ |
| 21 | 18 19 | reccli | ⊢ ( 1 / 3 ) ∈ ℂ |
| 22 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 23 | 22 | oveq1i | ⊢ ( 3 / 3 ) = ( ( 2 + 1 ) / 3 ) |
| 24 | 18 19 | dividi | ⊢ ( 3 / 3 ) = 1 |
| 25 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 26 | 1 25 18 19 | divdiri | ⊢ ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 27 | 23 24 26 | 3eqtr3ri | ⊢ ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 |
| 28 | sincosq1eq | ⊢ ( ( ( 2 / 3 ) ∈ ℂ ∧ ( 1 / 3 ) ∈ ℂ ∧ ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 ) → ( sin ‘ ( ( 2 / 3 ) · ( π / 2 ) ) ) = ( cos ‘ ( ( 1 / 3 ) · ( π / 2 ) ) ) ) | |
| 29 | 20 21 27 28 | mp3an | ⊢ ( sin ‘ ( ( 2 / 3 ) · ( π / 2 ) ) ) = ( cos ‘ ( ( 1 / 3 ) · ( π / 2 ) ) ) |
| 30 | picn | ⊢ π ∈ ℂ | |
| 31 | 1 18 30 1 19 10 | divmuldivi | ⊢ ( ( 2 / 3 ) · ( π / 2 ) ) = ( ( 2 · π ) / ( 3 · 2 ) ) |
| 32 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 33 | 32 | oveq2i | ⊢ ( ( 2 · π ) / ( 3 · 2 ) ) = ( ( 2 · π ) / 6 ) |
| 34 | 6cn | ⊢ 6 ∈ ℂ | |
| 35 | 1 30 34 5 | divassi | ⊢ ( ( 2 · π ) / 6 ) = ( 2 · ( π / 6 ) ) |
| 36 | 31 33 35 | 3eqtri | ⊢ ( ( 2 / 3 ) · ( π / 2 ) ) = ( 2 · ( π / 6 ) ) |
| 37 | 36 | fveq2i | ⊢ ( sin ‘ ( ( 2 / 3 ) · ( π / 2 ) ) ) = ( sin ‘ ( 2 · ( π / 6 ) ) ) |
| 38 | 29 37 | eqtr3i | ⊢ ( cos ‘ ( ( 1 / 3 ) · ( π / 2 ) ) ) = ( sin ‘ ( 2 · ( π / 6 ) ) ) |
| 39 | 25 18 30 1 19 10 | divmuldivi | ⊢ ( ( 1 / 3 ) · ( π / 2 ) ) = ( ( 1 · π ) / ( 3 · 2 ) ) |
| 40 | 30 | mullidi | ⊢ ( 1 · π ) = π |
| 41 | 40 32 | oveq12i | ⊢ ( ( 1 · π ) / ( 3 · 2 ) ) = ( π / 6 ) |
| 42 | 39 41 | eqtri | ⊢ ( ( 1 / 3 ) · ( π / 2 ) ) = ( π / 6 ) |
| 43 | 42 | fveq2i | ⊢ ( cos ‘ ( ( 1 / 3 ) · ( π / 2 ) ) ) = ( cos ‘ ( π / 6 ) ) |
| 44 | 38 43 | eqtr3i | ⊢ ( sin ‘ ( 2 · ( π / 6 ) ) ) = ( cos ‘ ( π / 6 ) ) |
| 45 | 17 44 | eqtri | ⊢ ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( cos ‘ ( π / 6 ) ) |
| 46 | 13 | mullidi | ⊢ ( 1 · ( cos ‘ ( π / 6 ) ) ) = ( cos ‘ ( π / 6 ) ) |
| 47 | 45 46 | eqtr4i | ⊢ ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( 1 · ( cos ‘ ( π / 6 ) ) ) |
| 48 | 1 9 | mulcli | ⊢ ( 2 · ( sin ‘ ( π / 6 ) ) ) ∈ ℂ |
| 49 | pipos | ⊢ 0 < π | |
| 50 | 2 3 49 4 | divgt0ii | ⊢ 0 < ( π / 6 ) |
| 51 | 2lt6 | ⊢ 2 < 6 | |
| 52 | 2re | ⊢ 2 ∈ ℝ | |
| 53 | 2pos | ⊢ 0 < 2 | |
| 54 | 52 53 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 55 | 3 4 | pm3.2i | ⊢ ( 6 ∈ ℝ ∧ 0 < 6 ) |
| 56 | 2 49 | pm3.2i | ⊢ ( π ∈ ℝ ∧ 0 < π ) |
| 57 | ltdiv2 | ⊢ ( ( ( 2 ∈ ℝ ∧ 0 < 2 ) ∧ ( 6 ∈ ℝ ∧ 0 < 6 ) ∧ ( π ∈ ℝ ∧ 0 < π ) ) → ( 2 < 6 ↔ ( π / 6 ) < ( π / 2 ) ) ) | |
| 58 | 54 55 56 57 | mp3an | ⊢ ( 2 < 6 ↔ ( π / 6 ) < ( π / 2 ) ) |
| 59 | 51 58 | mpbi | ⊢ ( π / 6 ) < ( π / 2 ) |
| 60 | 0re | ⊢ 0 ∈ ℝ | |
| 61 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 62 | rexr | ⊢ ( 0 ∈ ℝ → 0 ∈ ℝ* ) | |
| 63 | rexr | ⊢ ( ( π / 2 ) ∈ ℝ → ( π / 2 ) ∈ ℝ* ) | |
| 64 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( π / 6 ) ∈ ℝ ∧ 0 < ( π / 6 ) ∧ ( π / 6 ) < ( π / 2 ) ) ) ) | |
| 65 | 62 63 64 | syl2an | ⊢ ( ( 0 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( π / 6 ) ∈ ℝ ∧ 0 < ( π / 6 ) ∧ ( π / 6 ) < ( π / 2 ) ) ) ) |
| 66 | 60 61 65 | mp2an | ⊢ ( ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( π / 6 ) ∈ ℝ ∧ 0 < ( π / 6 ) ∧ ( π / 6 ) < ( π / 2 ) ) ) |
| 67 | 6 50 59 66 | mpbir3an | ⊢ ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) |
| 68 | sincosq1sgn | ⊢ ( ( π / 6 ) ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ ( π / 6 ) ) ∧ 0 < ( cos ‘ ( π / 6 ) ) ) ) | |
| 69 | 67 68 | ax-mp | ⊢ ( 0 < ( sin ‘ ( π / 6 ) ) ∧ 0 < ( cos ‘ ( π / 6 ) ) ) |
| 70 | 69 | simpri | ⊢ 0 < ( cos ‘ ( π / 6 ) ) |
| 71 | 12 70 | gt0ne0ii | ⊢ ( cos ‘ ( π / 6 ) ) ≠ 0 |
| 72 | 13 71 | pm3.2i | ⊢ ( ( cos ‘ ( π / 6 ) ) ∈ ℂ ∧ ( cos ‘ ( π / 6 ) ) ≠ 0 ) |
| 73 | mulcan2 | ⊢ ( ( ( 2 · ( sin ‘ ( π / 6 ) ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( cos ‘ ( π / 6 ) ) ∈ ℂ ∧ ( cos ‘ ( π / 6 ) ) ≠ 0 ) ) → ( ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( 1 · ( cos ‘ ( π / 6 ) ) ) ↔ ( 2 · ( sin ‘ ( π / 6 ) ) ) = 1 ) ) | |
| 74 | 48 25 72 73 | mp3an | ⊢ ( ( ( 2 · ( sin ‘ ( π / 6 ) ) ) · ( cos ‘ ( π / 6 ) ) ) = ( 1 · ( cos ‘ ( π / 6 ) ) ) ↔ ( 2 · ( sin ‘ ( π / 6 ) ) ) = 1 ) |
| 75 | 47 74 | mpbi | ⊢ ( 2 · ( sin ‘ ( π / 6 ) ) ) = 1 |
| 76 | 1 9 10 75 | mvllmuli | ⊢ ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) |
| 77 | 3re | ⊢ 3 ∈ ℝ | |
| 78 | 3pos | ⊢ 0 < 3 | |
| 79 | 77 78 | sqrtpclii | ⊢ ( √ ‘ 3 ) ∈ ℝ |
| 80 | 79 | recni | ⊢ ( √ ‘ 3 ) ∈ ℂ |
| 81 | 80 1 10 | sqdivi | ⊢ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) = ( ( ( √ ‘ 3 ) ↑ 2 ) / ( 2 ↑ 2 ) ) |
| 82 | 60 77 78 | ltleii | ⊢ 0 ≤ 3 |
| 83 | 77 | sqsqrti | ⊢ ( 0 ≤ 3 → ( ( √ ‘ 3 ) ↑ 2 ) = 3 ) |
| 84 | 82 83 | ax-mp | ⊢ ( ( √ ‘ 3 ) ↑ 2 ) = 3 |
| 85 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 86 | 84 85 | oveq12i | ⊢ ( ( ( √ ‘ 3 ) ↑ 2 ) / ( 2 ↑ 2 ) ) = ( 3 / 4 ) |
| 87 | 81 86 | eqtri | ⊢ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) = ( 3 / 4 ) |
| 88 | 87 | fveq2i | ⊢ ( √ ‘ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) ) = ( √ ‘ ( 3 / 4 ) ) |
| 89 | 77 | sqrtge0i | ⊢ ( 0 ≤ 3 → 0 ≤ ( √ ‘ 3 ) ) |
| 90 | 82 89 | ax-mp | ⊢ 0 ≤ ( √ ‘ 3 ) |
| 91 | 79 52 | divge0i | ⊢ ( ( 0 ≤ ( √ ‘ 3 ) ∧ 0 < 2 ) → 0 ≤ ( ( √ ‘ 3 ) / 2 ) ) |
| 92 | 90 53 91 | mp2an | ⊢ 0 ≤ ( ( √ ‘ 3 ) / 2 ) |
| 93 | 79 52 10 | redivcli | ⊢ ( ( √ ‘ 3 ) / 2 ) ∈ ℝ |
| 94 | 93 | sqrtsqi | ⊢ ( 0 ≤ ( ( √ ‘ 3 ) / 2 ) → ( √ ‘ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) ) = ( ( √ ‘ 3 ) / 2 ) ) |
| 95 | 92 94 | ax-mp | ⊢ ( √ ‘ ( ( ( √ ‘ 3 ) / 2 ) ↑ 2 ) ) = ( ( √ ‘ 3 ) / 2 ) |
| 96 | 4cn | ⊢ 4 ∈ ℂ | |
| 97 | 4ne0 | ⊢ 4 ≠ 0 | |
| 98 | 96 97 | dividi | ⊢ ( 4 / 4 ) = 1 |
| 99 | 98 | oveq1i | ⊢ ( ( 4 / 4 ) − ( 1 / 4 ) ) = ( 1 − ( 1 / 4 ) ) |
| 100 | 96 97 | pm3.2i | ⊢ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) |
| 101 | divsubdir | ⊢ ( ( 4 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( 4 − 1 ) / 4 ) = ( ( 4 / 4 ) − ( 1 / 4 ) ) ) | |
| 102 | 96 25 100 101 | mp3an | ⊢ ( ( 4 − 1 ) / 4 ) = ( ( 4 / 4 ) − ( 1 / 4 ) ) |
| 103 | 4m1e3 | ⊢ ( 4 − 1 ) = 3 | |
| 104 | 103 | oveq1i | ⊢ ( ( 4 − 1 ) / 4 ) = ( 3 / 4 ) |
| 105 | 102 104 | eqtr3i | ⊢ ( ( 4 / 4 ) − ( 1 / 4 ) ) = ( 3 / 4 ) |
| 106 | 96 97 | reccli | ⊢ ( 1 / 4 ) ∈ ℂ |
| 107 | 13 | sqcli | ⊢ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ∈ ℂ |
| 108 | 76 | oveq1i | ⊢ ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) = ( ( 1 / 2 ) ↑ 2 ) |
| 109 | 1 10 | sqrecii | ⊢ ( ( 1 / 2 ) ↑ 2 ) = ( 1 / ( 2 ↑ 2 ) ) |
| 110 | 85 | oveq2i | ⊢ ( 1 / ( 2 ↑ 2 ) ) = ( 1 / 4 ) |
| 111 | 108 109 110 | 3eqtri | ⊢ ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) = ( 1 / 4 ) |
| 112 | 111 | oveq1i | ⊢ ( ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = ( ( 1 / 4 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) |
| 113 | sincossq | ⊢ ( ( π / 6 ) ∈ ℂ → ( ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = 1 ) | |
| 114 | 7 113 | ax-mp | ⊢ ( ( ( sin ‘ ( π / 6 ) ) ↑ 2 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = 1 |
| 115 | 112 114 | eqtr3i | ⊢ ( ( 1 / 4 ) + ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = 1 |
| 116 | 25 106 107 115 | subaddrii | ⊢ ( 1 − ( 1 / 4 ) ) = ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) |
| 117 | 99 105 116 | 3eqtr3ri | ⊢ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) = ( 3 / 4 ) |
| 118 | 117 | fveq2i | ⊢ ( √ ‘ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = ( √ ‘ ( 3 / 4 ) ) |
| 119 | 60 12 70 | ltleii | ⊢ 0 ≤ ( cos ‘ ( π / 6 ) ) |
| 120 | 12 | sqrtsqi | ⊢ ( 0 ≤ ( cos ‘ ( π / 6 ) ) → ( √ ‘ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = ( cos ‘ ( π / 6 ) ) ) |
| 121 | 119 120 | ax-mp | ⊢ ( √ ‘ ( ( cos ‘ ( π / 6 ) ) ↑ 2 ) ) = ( cos ‘ ( π / 6 ) ) |
| 122 | 118 121 | eqtr3i | ⊢ ( √ ‘ ( 3 / 4 ) ) = ( cos ‘ ( π / 6 ) ) |
| 123 | 88 95 122 | 3eqtr3ri | ⊢ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) |
| 124 | 76 123 | pm3.2i | ⊢ ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) ) |