This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine and cosine of _pi / 6 . (Contributed by Paul Chapman, 25-Jan-2008) (Revised by Wolf Lammen, 24-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincos6thpi | |- ( ( sin ` ( _pi / 6 ) ) = ( 1 / 2 ) /\ ( cos ` ( _pi / 6 ) ) = ( ( sqrt ` 3 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | |- 2 e. CC |
|
| 2 | pire | |- _pi e. RR |
|
| 3 | 6re | |- 6 e. RR |
|
| 4 | 6pos | |- 0 < 6 |
|
| 5 | 3 4 | gt0ne0ii | |- 6 =/= 0 |
| 6 | 2 3 5 | redivcli | |- ( _pi / 6 ) e. RR |
| 7 | 6 | recni | |- ( _pi / 6 ) e. CC |
| 8 | sincl | |- ( ( _pi / 6 ) e. CC -> ( sin ` ( _pi / 6 ) ) e. CC ) |
|
| 9 | 7 8 | ax-mp | |- ( sin ` ( _pi / 6 ) ) e. CC |
| 10 | 2ne0 | |- 2 =/= 0 |
|
| 11 | recoscl | |- ( ( _pi / 6 ) e. RR -> ( cos ` ( _pi / 6 ) ) e. RR ) |
|
| 12 | 6 11 | ax-mp | |- ( cos ` ( _pi / 6 ) ) e. RR |
| 13 | 12 | recni | |- ( cos ` ( _pi / 6 ) ) e. CC |
| 14 | 1 9 13 | mulassi | |- ( ( 2 x. ( sin ` ( _pi / 6 ) ) ) x. ( cos ` ( _pi / 6 ) ) ) = ( 2 x. ( ( sin ` ( _pi / 6 ) ) x. ( cos ` ( _pi / 6 ) ) ) ) |
| 15 | sin2t | |- ( ( _pi / 6 ) e. CC -> ( sin ` ( 2 x. ( _pi / 6 ) ) ) = ( 2 x. ( ( sin ` ( _pi / 6 ) ) x. ( cos ` ( _pi / 6 ) ) ) ) ) |
|
| 16 | 7 15 | ax-mp | |- ( sin ` ( 2 x. ( _pi / 6 ) ) ) = ( 2 x. ( ( sin ` ( _pi / 6 ) ) x. ( cos ` ( _pi / 6 ) ) ) ) |
| 17 | 14 16 | eqtr4i | |- ( ( 2 x. ( sin ` ( _pi / 6 ) ) ) x. ( cos ` ( _pi / 6 ) ) ) = ( sin ` ( 2 x. ( _pi / 6 ) ) ) |
| 18 | 3cn | |- 3 e. CC |
|
| 19 | 3ne0 | |- 3 =/= 0 |
|
| 20 | 1 18 19 | divcli | |- ( 2 / 3 ) e. CC |
| 21 | 18 19 | reccli | |- ( 1 / 3 ) e. CC |
| 22 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 23 | 22 | oveq1i | |- ( 3 / 3 ) = ( ( 2 + 1 ) / 3 ) |
| 24 | 18 19 | dividi | |- ( 3 / 3 ) = 1 |
| 25 | ax-1cn | |- 1 e. CC |
|
| 26 | 1 25 18 19 | divdiri | |- ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 27 | 23 24 26 | 3eqtr3ri | |- ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 |
| 28 | sincosq1eq | |- ( ( ( 2 / 3 ) e. CC /\ ( 1 / 3 ) e. CC /\ ( ( 2 / 3 ) + ( 1 / 3 ) ) = 1 ) -> ( sin ` ( ( 2 / 3 ) x. ( _pi / 2 ) ) ) = ( cos ` ( ( 1 / 3 ) x. ( _pi / 2 ) ) ) ) |
|
| 29 | 20 21 27 28 | mp3an | |- ( sin ` ( ( 2 / 3 ) x. ( _pi / 2 ) ) ) = ( cos ` ( ( 1 / 3 ) x. ( _pi / 2 ) ) ) |
| 30 | picn | |- _pi e. CC |
|
| 31 | 1 18 30 1 19 10 | divmuldivi | |- ( ( 2 / 3 ) x. ( _pi / 2 ) ) = ( ( 2 x. _pi ) / ( 3 x. 2 ) ) |
| 32 | 3t2e6 | |- ( 3 x. 2 ) = 6 |
|
| 33 | 32 | oveq2i | |- ( ( 2 x. _pi ) / ( 3 x. 2 ) ) = ( ( 2 x. _pi ) / 6 ) |
| 34 | 6cn | |- 6 e. CC |
|
| 35 | 1 30 34 5 | divassi | |- ( ( 2 x. _pi ) / 6 ) = ( 2 x. ( _pi / 6 ) ) |
| 36 | 31 33 35 | 3eqtri | |- ( ( 2 / 3 ) x. ( _pi / 2 ) ) = ( 2 x. ( _pi / 6 ) ) |
| 37 | 36 | fveq2i | |- ( sin ` ( ( 2 / 3 ) x. ( _pi / 2 ) ) ) = ( sin ` ( 2 x. ( _pi / 6 ) ) ) |
| 38 | 29 37 | eqtr3i | |- ( cos ` ( ( 1 / 3 ) x. ( _pi / 2 ) ) ) = ( sin ` ( 2 x. ( _pi / 6 ) ) ) |
| 39 | 25 18 30 1 19 10 | divmuldivi | |- ( ( 1 / 3 ) x. ( _pi / 2 ) ) = ( ( 1 x. _pi ) / ( 3 x. 2 ) ) |
| 40 | 30 | mullidi | |- ( 1 x. _pi ) = _pi |
| 41 | 40 32 | oveq12i | |- ( ( 1 x. _pi ) / ( 3 x. 2 ) ) = ( _pi / 6 ) |
| 42 | 39 41 | eqtri | |- ( ( 1 / 3 ) x. ( _pi / 2 ) ) = ( _pi / 6 ) |
| 43 | 42 | fveq2i | |- ( cos ` ( ( 1 / 3 ) x. ( _pi / 2 ) ) ) = ( cos ` ( _pi / 6 ) ) |
| 44 | 38 43 | eqtr3i | |- ( sin ` ( 2 x. ( _pi / 6 ) ) ) = ( cos ` ( _pi / 6 ) ) |
| 45 | 17 44 | eqtri | |- ( ( 2 x. ( sin ` ( _pi / 6 ) ) ) x. ( cos ` ( _pi / 6 ) ) ) = ( cos ` ( _pi / 6 ) ) |
| 46 | 13 | mullidi | |- ( 1 x. ( cos ` ( _pi / 6 ) ) ) = ( cos ` ( _pi / 6 ) ) |
| 47 | 45 46 | eqtr4i | |- ( ( 2 x. ( sin ` ( _pi / 6 ) ) ) x. ( cos ` ( _pi / 6 ) ) ) = ( 1 x. ( cos ` ( _pi / 6 ) ) ) |
| 48 | 1 9 | mulcli | |- ( 2 x. ( sin ` ( _pi / 6 ) ) ) e. CC |
| 49 | pipos | |- 0 < _pi |
|
| 50 | 2 3 49 4 | divgt0ii | |- 0 < ( _pi / 6 ) |
| 51 | 2lt6 | |- 2 < 6 |
|
| 52 | 2re | |- 2 e. RR |
|
| 53 | 2pos | |- 0 < 2 |
|
| 54 | 52 53 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 55 | 3 4 | pm3.2i | |- ( 6 e. RR /\ 0 < 6 ) |
| 56 | 2 49 | pm3.2i | |- ( _pi e. RR /\ 0 < _pi ) |
| 57 | ltdiv2 | |- ( ( ( 2 e. RR /\ 0 < 2 ) /\ ( 6 e. RR /\ 0 < 6 ) /\ ( _pi e. RR /\ 0 < _pi ) ) -> ( 2 < 6 <-> ( _pi / 6 ) < ( _pi / 2 ) ) ) |
|
| 58 | 54 55 56 57 | mp3an | |- ( 2 < 6 <-> ( _pi / 6 ) < ( _pi / 2 ) ) |
| 59 | 51 58 | mpbi | |- ( _pi / 6 ) < ( _pi / 2 ) |
| 60 | 0re | |- 0 e. RR |
|
| 61 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 62 | rexr | |- ( 0 e. RR -> 0 e. RR* ) |
|
| 63 | rexr | |- ( ( _pi / 2 ) e. RR -> ( _pi / 2 ) e. RR* ) |
|
| 64 | elioo2 | |- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( _pi / 6 ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( _pi / 6 ) e. RR /\ 0 < ( _pi / 6 ) /\ ( _pi / 6 ) < ( _pi / 2 ) ) ) ) |
|
| 65 | 62 63 64 | syl2an | |- ( ( 0 e. RR /\ ( _pi / 2 ) e. RR ) -> ( ( _pi / 6 ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( _pi / 6 ) e. RR /\ 0 < ( _pi / 6 ) /\ ( _pi / 6 ) < ( _pi / 2 ) ) ) ) |
| 66 | 60 61 65 | mp2an | |- ( ( _pi / 6 ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( _pi / 6 ) e. RR /\ 0 < ( _pi / 6 ) /\ ( _pi / 6 ) < ( _pi / 2 ) ) ) |
| 67 | 6 50 59 66 | mpbir3an | |- ( _pi / 6 ) e. ( 0 (,) ( _pi / 2 ) ) |
| 68 | sincosq1sgn | |- ( ( _pi / 6 ) e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` ( _pi / 6 ) ) /\ 0 < ( cos ` ( _pi / 6 ) ) ) ) |
|
| 69 | 67 68 | ax-mp | |- ( 0 < ( sin ` ( _pi / 6 ) ) /\ 0 < ( cos ` ( _pi / 6 ) ) ) |
| 70 | 69 | simpri | |- 0 < ( cos ` ( _pi / 6 ) ) |
| 71 | 12 70 | gt0ne0ii | |- ( cos ` ( _pi / 6 ) ) =/= 0 |
| 72 | 13 71 | pm3.2i | |- ( ( cos ` ( _pi / 6 ) ) e. CC /\ ( cos ` ( _pi / 6 ) ) =/= 0 ) |
| 73 | mulcan2 | |- ( ( ( 2 x. ( sin ` ( _pi / 6 ) ) ) e. CC /\ 1 e. CC /\ ( ( cos ` ( _pi / 6 ) ) e. CC /\ ( cos ` ( _pi / 6 ) ) =/= 0 ) ) -> ( ( ( 2 x. ( sin ` ( _pi / 6 ) ) ) x. ( cos ` ( _pi / 6 ) ) ) = ( 1 x. ( cos ` ( _pi / 6 ) ) ) <-> ( 2 x. ( sin ` ( _pi / 6 ) ) ) = 1 ) ) |
|
| 74 | 48 25 72 73 | mp3an | |- ( ( ( 2 x. ( sin ` ( _pi / 6 ) ) ) x. ( cos ` ( _pi / 6 ) ) ) = ( 1 x. ( cos ` ( _pi / 6 ) ) ) <-> ( 2 x. ( sin ` ( _pi / 6 ) ) ) = 1 ) |
| 75 | 47 74 | mpbi | |- ( 2 x. ( sin ` ( _pi / 6 ) ) ) = 1 |
| 76 | 1 9 10 75 | mvllmuli | |- ( sin ` ( _pi / 6 ) ) = ( 1 / 2 ) |
| 77 | 3re | |- 3 e. RR |
|
| 78 | 3pos | |- 0 < 3 |
|
| 79 | 77 78 | sqrtpclii | |- ( sqrt ` 3 ) e. RR |
| 80 | 79 | recni | |- ( sqrt ` 3 ) e. CC |
| 81 | 80 1 10 | sqdivi | |- ( ( ( sqrt ` 3 ) / 2 ) ^ 2 ) = ( ( ( sqrt ` 3 ) ^ 2 ) / ( 2 ^ 2 ) ) |
| 82 | 60 77 78 | ltleii | |- 0 <_ 3 |
| 83 | 77 | sqsqrti | |- ( 0 <_ 3 -> ( ( sqrt ` 3 ) ^ 2 ) = 3 ) |
| 84 | 82 83 | ax-mp | |- ( ( sqrt ` 3 ) ^ 2 ) = 3 |
| 85 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 86 | 84 85 | oveq12i | |- ( ( ( sqrt ` 3 ) ^ 2 ) / ( 2 ^ 2 ) ) = ( 3 / 4 ) |
| 87 | 81 86 | eqtri | |- ( ( ( sqrt ` 3 ) / 2 ) ^ 2 ) = ( 3 / 4 ) |
| 88 | 87 | fveq2i | |- ( sqrt ` ( ( ( sqrt ` 3 ) / 2 ) ^ 2 ) ) = ( sqrt ` ( 3 / 4 ) ) |
| 89 | 77 | sqrtge0i | |- ( 0 <_ 3 -> 0 <_ ( sqrt ` 3 ) ) |
| 90 | 82 89 | ax-mp | |- 0 <_ ( sqrt ` 3 ) |
| 91 | 79 52 | divge0i | |- ( ( 0 <_ ( sqrt ` 3 ) /\ 0 < 2 ) -> 0 <_ ( ( sqrt ` 3 ) / 2 ) ) |
| 92 | 90 53 91 | mp2an | |- 0 <_ ( ( sqrt ` 3 ) / 2 ) |
| 93 | 79 52 10 | redivcli | |- ( ( sqrt ` 3 ) / 2 ) e. RR |
| 94 | 93 | sqrtsqi | |- ( 0 <_ ( ( sqrt ` 3 ) / 2 ) -> ( sqrt ` ( ( ( sqrt ` 3 ) / 2 ) ^ 2 ) ) = ( ( sqrt ` 3 ) / 2 ) ) |
| 95 | 92 94 | ax-mp | |- ( sqrt ` ( ( ( sqrt ` 3 ) / 2 ) ^ 2 ) ) = ( ( sqrt ` 3 ) / 2 ) |
| 96 | 4cn | |- 4 e. CC |
|
| 97 | 4ne0 | |- 4 =/= 0 |
|
| 98 | 96 97 | dividi | |- ( 4 / 4 ) = 1 |
| 99 | 98 | oveq1i | |- ( ( 4 / 4 ) - ( 1 / 4 ) ) = ( 1 - ( 1 / 4 ) ) |
| 100 | 96 97 | pm3.2i | |- ( 4 e. CC /\ 4 =/= 0 ) |
| 101 | divsubdir | |- ( ( 4 e. CC /\ 1 e. CC /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( 4 - 1 ) / 4 ) = ( ( 4 / 4 ) - ( 1 / 4 ) ) ) |
|
| 102 | 96 25 100 101 | mp3an | |- ( ( 4 - 1 ) / 4 ) = ( ( 4 / 4 ) - ( 1 / 4 ) ) |
| 103 | 4m1e3 | |- ( 4 - 1 ) = 3 |
|
| 104 | 103 | oveq1i | |- ( ( 4 - 1 ) / 4 ) = ( 3 / 4 ) |
| 105 | 102 104 | eqtr3i | |- ( ( 4 / 4 ) - ( 1 / 4 ) ) = ( 3 / 4 ) |
| 106 | 96 97 | reccli | |- ( 1 / 4 ) e. CC |
| 107 | 13 | sqcli | |- ( ( cos ` ( _pi / 6 ) ) ^ 2 ) e. CC |
| 108 | 76 | oveq1i | |- ( ( sin ` ( _pi / 6 ) ) ^ 2 ) = ( ( 1 / 2 ) ^ 2 ) |
| 109 | 1 10 | sqrecii | |- ( ( 1 / 2 ) ^ 2 ) = ( 1 / ( 2 ^ 2 ) ) |
| 110 | 85 | oveq2i | |- ( 1 / ( 2 ^ 2 ) ) = ( 1 / 4 ) |
| 111 | 108 109 110 | 3eqtri | |- ( ( sin ` ( _pi / 6 ) ) ^ 2 ) = ( 1 / 4 ) |
| 112 | 111 | oveq1i | |- ( ( ( sin ` ( _pi / 6 ) ) ^ 2 ) + ( ( cos ` ( _pi / 6 ) ) ^ 2 ) ) = ( ( 1 / 4 ) + ( ( cos ` ( _pi / 6 ) ) ^ 2 ) ) |
| 113 | sincossq | |- ( ( _pi / 6 ) e. CC -> ( ( ( sin ` ( _pi / 6 ) ) ^ 2 ) + ( ( cos ` ( _pi / 6 ) ) ^ 2 ) ) = 1 ) |
|
| 114 | 7 113 | ax-mp | |- ( ( ( sin ` ( _pi / 6 ) ) ^ 2 ) + ( ( cos ` ( _pi / 6 ) ) ^ 2 ) ) = 1 |
| 115 | 112 114 | eqtr3i | |- ( ( 1 / 4 ) + ( ( cos ` ( _pi / 6 ) ) ^ 2 ) ) = 1 |
| 116 | 25 106 107 115 | subaddrii | |- ( 1 - ( 1 / 4 ) ) = ( ( cos ` ( _pi / 6 ) ) ^ 2 ) |
| 117 | 99 105 116 | 3eqtr3ri | |- ( ( cos ` ( _pi / 6 ) ) ^ 2 ) = ( 3 / 4 ) |
| 118 | 117 | fveq2i | |- ( sqrt ` ( ( cos ` ( _pi / 6 ) ) ^ 2 ) ) = ( sqrt ` ( 3 / 4 ) ) |
| 119 | 60 12 70 | ltleii | |- 0 <_ ( cos ` ( _pi / 6 ) ) |
| 120 | 12 | sqrtsqi | |- ( 0 <_ ( cos ` ( _pi / 6 ) ) -> ( sqrt ` ( ( cos ` ( _pi / 6 ) ) ^ 2 ) ) = ( cos ` ( _pi / 6 ) ) ) |
| 121 | 119 120 | ax-mp | |- ( sqrt ` ( ( cos ` ( _pi / 6 ) ) ^ 2 ) ) = ( cos ` ( _pi / 6 ) ) |
| 122 | 118 121 | eqtr3i | |- ( sqrt ` ( 3 / 4 ) ) = ( cos ` ( _pi / 6 ) ) |
| 123 | 88 95 122 | 3eqtr3ri | |- ( cos ` ( _pi / 6 ) ) = ( ( sqrt ` 3 ) / 2 ) |
| 124 | 76 123 | pm3.2i | |- ( ( sin ` ( _pi / 6 ) ) = ( 1 / 2 ) /\ ( cos ` ( _pi / 6 ) ) = ( ( sqrt ` 3 ) / 2 ) ) |