This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincosq1eq | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) = 1 ) → ( sin ‘ ( 𝐴 · ( π / 2 ) ) ) = ( cos ‘ ( 𝐵 · ( π / 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | 2ne0 | ⊢ 2 ≠ 0 | |
| 4 | 1 2 3 | divcli | ⊢ ( π / 2 ) ∈ ℂ |
| 5 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( π / 2 ) ∈ ℂ ) → ( 𝐴 · ( π / 2 ) ) ∈ ℂ ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( π / 2 ) ) ∈ ℂ ) |
| 7 | coshalfpim | ⊢ ( ( 𝐴 · ( π / 2 ) ) ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( 𝐴 · ( π / 2 ) ) ) ) = ( sin ‘ ( 𝐴 · ( π / 2 ) ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( 𝐴 · ( π / 2 ) ) ) ) = ( sin ‘ ( 𝐴 · ( π / 2 ) ) ) ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) = 1 ) → ( cos ‘ ( ( π / 2 ) − ( 𝐴 · ( π / 2 ) ) ) ) = ( sin ‘ ( 𝐴 · ( π / 2 ) ) ) ) |
| 10 | adddir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( π / 2 ) ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) · ( π / 2 ) ) = ( ( 𝐴 · ( π / 2 ) ) + ( 𝐵 · ( π / 2 ) ) ) ) | |
| 11 | 4 10 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) · ( π / 2 ) ) = ( ( 𝐴 · ( π / 2 ) ) + ( 𝐵 · ( π / 2 ) ) ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) = 1 ) → ( ( 𝐴 + 𝐵 ) · ( π / 2 ) ) = ( ( 𝐴 · ( π / 2 ) ) + ( 𝐵 · ( π / 2 ) ) ) ) |
| 13 | oveq1 | ⊢ ( ( 𝐴 + 𝐵 ) = 1 → ( ( 𝐴 + 𝐵 ) · ( π / 2 ) ) = ( 1 · ( π / 2 ) ) ) | |
| 14 | 4 | mullidi | ⊢ ( 1 · ( π / 2 ) ) = ( π / 2 ) |
| 15 | 13 14 | eqtrdi | ⊢ ( ( 𝐴 + 𝐵 ) = 1 → ( ( 𝐴 + 𝐵 ) · ( π / 2 ) ) = ( π / 2 ) ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) = 1 ) → ( ( 𝐴 + 𝐵 ) · ( π / 2 ) ) = ( π / 2 ) ) |
| 17 | 12 16 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) = 1 ) → ( ( 𝐴 · ( π / 2 ) ) + ( 𝐵 · ( π / 2 ) ) ) = ( π / 2 ) ) |
| 18 | mulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( π / 2 ) ∈ ℂ ) → ( 𝐵 · ( π / 2 ) ) ∈ ℂ ) | |
| 19 | 4 18 | mpan2 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 · ( π / 2 ) ) ∈ ℂ ) |
| 20 | subadd | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ ( 𝐴 · ( π / 2 ) ) ∈ ℂ ∧ ( 𝐵 · ( π / 2 ) ) ∈ ℂ ) → ( ( ( π / 2 ) − ( 𝐴 · ( π / 2 ) ) ) = ( 𝐵 · ( π / 2 ) ) ↔ ( ( 𝐴 · ( π / 2 ) ) + ( 𝐵 · ( π / 2 ) ) ) = ( π / 2 ) ) ) | |
| 21 | 4 6 19 20 | mp3an3an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( π / 2 ) − ( 𝐴 · ( π / 2 ) ) ) = ( 𝐵 · ( π / 2 ) ) ↔ ( ( 𝐴 · ( π / 2 ) ) + ( 𝐵 · ( π / 2 ) ) ) = ( π / 2 ) ) ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) = 1 ) → ( ( ( π / 2 ) − ( 𝐴 · ( π / 2 ) ) ) = ( 𝐵 · ( π / 2 ) ) ↔ ( ( 𝐴 · ( π / 2 ) ) + ( 𝐵 · ( π / 2 ) ) ) = ( π / 2 ) ) ) |
| 23 | 17 22 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) = 1 ) → ( ( π / 2 ) − ( 𝐴 · ( π / 2 ) ) ) = ( 𝐵 · ( π / 2 ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) = 1 ) → ( cos ‘ ( ( π / 2 ) − ( 𝐴 · ( π / 2 ) ) ) ) = ( cos ‘ ( 𝐵 · ( π / 2 ) ) ) ) |
| 25 | 9 24 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) = 1 ) → ( sin ‘ ( 𝐴 · ( π / 2 ) ) ) = ( cos ‘ ( 𝐵 · ( π / 2 ) ) ) ) |