This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a reciprocal is the reciprocal of the square. (Contributed by NM, 17-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqval.1 | ⊢ 𝐴 ∈ ℂ | |
| sqreci.1 | ⊢ 𝐴 ≠ 0 | ||
| Assertion | sqrecii | ⊢ ( ( 1 / 𝐴 ) ↑ 2 ) = ( 1 / ( 𝐴 ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqval.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | sqreci.1 | ⊢ 𝐴 ≠ 0 | |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | 3 1 3 1 2 2 | divmuldivi | ⊢ ( ( 1 / 𝐴 ) · ( 1 / 𝐴 ) ) = ( ( 1 · 1 ) / ( 𝐴 · 𝐴 ) ) |
| 5 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 6 | 5 | oveq1i | ⊢ ( ( 1 · 1 ) / ( 𝐴 · 𝐴 ) ) = ( 1 / ( 𝐴 · 𝐴 ) ) |
| 7 | 4 6 | eqtri | ⊢ ( ( 1 / 𝐴 ) · ( 1 / 𝐴 ) ) = ( 1 / ( 𝐴 · 𝐴 ) ) |
| 8 | 1 2 | reccli | ⊢ ( 1 / 𝐴 ) ∈ ℂ |
| 9 | 8 | sqvali | ⊢ ( ( 1 / 𝐴 ) ↑ 2 ) = ( ( 1 / 𝐴 ) · ( 1 / 𝐴 ) ) |
| 10 | 1 | sqvali | ⊢ ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) |
| 11 | 10 | oveq2i | ⊢ ( 1 / ( 𝐴 ↑ 2 ) ) = ( 1 / ( 𝐴 · 𝐴 ) ) |
| 12 | 7 9 11 | 3eqtr4i | ⊢ ( ( 1 / 𝐴 ) ↑ 2 ) = ( 1 / ( 𝐴 ↑ 2 ) ) |