This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move the left term in a product on the LHS to the RHS, inference form. Uses divcan4i . (Contributed by David A. Wheeler, 11-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvllmuli.1 | ⊢ 𝐴 ∈ ℂ | |
| mvllmuli.2 | ⊢ 𝐵 ∈ ℂ | ||
| mvllmuli.3 | ⊢ 𝐴 ≠ 0 | ||
| mvllmuli.4 | ⊢ ( 𝐴 · 𝐵 ) = 𝐶 | ||
| Assertion | mvllmuli | ⊢ 𝐵 = ( 𝐶 / 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvllmuli.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | mvllmuli.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | mvllmuli.3 | ⊢ 𝐴 ≠ 0 | |
| 4 | mvllmuli.4 | ⊢ ( 𝐴 · 𝐵 ) = 𝐶 | |
| 5 | 2 1 3 | divcan4i | ⊢ ( ( 𝐵 · 𝐴 ) / 𝐴 ) = 𝐵 |
| 6 | 1 2 4 | mulcomli | ⊢ ( 𝐵 · 𝐴 ) = 𝐶 |
| 7 | 6 | oveq1i | ⊢ ( ( 𝐵 · 𝐴 ) / 𝐴 ) = ( 𝐶 / 𝐴 ) |
| 8 | 5 7 | eqtr3i | ⊢ 𝐵 = ( 𝐶 / 𝐴 ) |