This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the operation .+ has an absorbing element Z (a.k.a. zero element), then any sequence containing a Z evaluates to Z . (Contributed by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqhomo.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqhomo.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | ||
| seqz.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑍 + 𝑥 ) = 𝑍 ) | ||
| seqz.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 + 𝑍 ) = 𝑍 ) | ||
| seqz.5 | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) | ||
| seqz.6 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | ||
| seqz.7 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐾 ) = 𝑍 ) | ||
| Assertion | seqz | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqhomo.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqhomo.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 3 | seqz.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑍 + 𝑥 ) = 𝑍 ) | |
| 4 | seqz.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 + 𝑍 ) = 𝑍 ) | |
| 5 | seqz.5 | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 6 | seqz.6 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | |
| 7 | seqz.7 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐾 ) = 𝑍 ) | |
| 8 | elfzuz | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 9 | 5 8 | syl | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | 5 | elfzelzd | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 11 | seq1 | ⊢ ( 𝐾 ∈ ℤ → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐹 ‘ 𝐾 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐹 ‘ 𝐾 ) ) |
| 13 | 12 7 | eqtrd | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝐾 ) = 𝑍 ) |
| 14 | seqeq1 | ⊢ ( 𝐾 = 𝑀 → seq 𝐾 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐹 ) ) | |
| 15 | 14 | fveq1d | ⊢ ( 𝐾 = 𝑀 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) |
| 16 | 15 | eqeq1d | ⊢ ( 𝐾 = 𝑀 → ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝐾 ) = 𝑍 ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = 𝑍 ) ) |
| 17 | 13 16 | syl5ibcom | ⊢ ( 𝜑 → ( 𝐾 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = 𝑍 ) ) |
| 18 | eluzel2 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 19 | 9 18 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 20 | seqm1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) + ( 𝐹 ‘ 𝐾 ) ) ) | |
| 21 | 19 20 | sylan | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) + ( 𝐹 ‘ 𝐾 ) ) ) |
| 22 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐹 ‘ 𝐾 ) = 𝑍 ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) + ( 𝐹 ‘ 𝐾 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) + 𝑍 ) ) |
| 24 | oveq1 | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) → ( 𝑥 + 𝑍 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) + 𝑍 ) ) | |
| 25 | 24 | eqeq1d | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) → ( ( 𝑥 + 𝑍 ) = 𝑍 ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) + 𝑍 ) = 𝑍 ) ) |
| 26 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝑥 + 𝑍 ) = 𝑍 ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝑥 + 𝑍 ) = 𝑍 ) |
| 28 | eluzp1m1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 29 | 19 28 | sylan | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 30 | fzssp1 | ⊢ ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... ( ( 𝐾 − 1 ) + 1 ) ) | |
| 31 | 10 | zcnd | ⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 32 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 33 | npcan | ⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) | |
| 34 | 31 32 33 | sylancl | ⊢ ( 𝜑 → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
| 35 | 34 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝐾 − 1 ) + 1 ) ) = ( 𝑀 ... 𝐾 ) ) |
| 36 | 30 35 | sseqtrid | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... 𝐾 ) ) |
| 37 | elfzuz3 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 38 | 5 37 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 39 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑀 ... 𝐾 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → ( 𝑀 ... 𝐾 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 41 | 36 40 | sstrd | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑀 ... ( 𝐾 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 43 | 42 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 44 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 45 | 43 44 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 46 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 47 | 29 45 46 | seqcl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) ∈ 𝑆 ) |
| 48 | 25 27 47 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) + 𝑍 ) = 𝑍 ) |
| 49 | 23 48 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐾 − 1 ) ) + ( 𝐹 ‘ 𝐾 ) ) = 𝑍 ) |
| 50 | 21 49 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = 𝑍 ) |
| 51 | 50 | ex | ⊢ ( 𝜑 → ( 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = 𝑍 ) ) |
| 52 | uzp1 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) | |
| 53 | 9 52 | syl | ⊢ ( 𝜑 → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 54 | 17 51 53 | mpjaod | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = 𝑍 ) |
| 55 | 54 7 | eqtr4d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐹 ‘ 𝐾 ) ) |
| 56 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 57 | 9 55 38 56 | seqfveq2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 58 | fvex | ⊢ ( 𝐹 ‘ 𝐾 ) ∈ V | |
| 59 | 58 | elsn | ⊢ ( ( 𝐹 ‘ 𝐾 ) ∈ { 𝑍 } ↔ ( 𝐹 ‘ 𝐾 ) = 𝑍 ) |
| 60 | 7 59 | sylibr | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐾 ) ∈ { 𝑍 } ) |
| 61 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ { 𝑍 } ) | |
| 62 | velsn | ⊢ ( 𝑥 ∈ { 𝑍 } ↔ 𝑥 = 𝑍 ) | |
| 63 | 61 62 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 = 𝑍 ) |
| 64 | 63 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑍 + 𝑦 ) ) |
| 65 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑍 + 𝑥 ) = ( 𝑍 + 𝑦 ) ) | |
| 66 | 65 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑍 + 𝑥 ) = 𝑍 ↔ ( 𝑍 + 𝑦 ) = 𝑍 ) ) |
| 67 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝑍 + 𝑥 ) = 𝑍 ) |
| 68 | 67 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝑍 + 𝑥 ) = 𝑍 ) |
| 69 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) | |
| 70 | 66 68 69 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑍 + 𝑦 ) = 𝑍 ) |
| 71 | 64 70 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = 𝑍 ) |
| 72 | ovex | ⊢ ( 𝑥 + 𝑦 ) ∈ V | |
| 73 | 72 | elsn | ⊢ ( ( 𝑥 + 𝑦 ) ∈ { 𝑍 } ↔ ( 𝑥 + 𝑦 ) = 𝑍 ) |
| 74 | 71 73 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑍 } ) |
| 75 | peano2uz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 76 | 9 75 | syl | ⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 77 | fzss1 | ⊢ ( ( 𝐾 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐾 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 78 | 76 77 | syl | ⊢ ( 𝜑 → ( ( 𝐾 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 79 | 78 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 80 | 79 2 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 81 | 60 74 38 80 | seqcl2 | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑍 } ) |
| 82 | elsni | ⊢ ( ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑍 } → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = 𝑍 ) | |
| 83 | 81 82 | syl | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐹 ) ‘ 𝑁 ) = 𝑍 ) |
| 84 | 57 83 | eqtrd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = 𝑍 ) |