This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfveq2.1 | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| seqfveq2.2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) | ||
| seqfveq2.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | ||
| seqfveq2.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | ||
| Assertion | seqfveq2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfveq2.1 | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | seqfveq2.2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) | |
| 3 | seqfveq2.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 4 | seqfveq2.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 5 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝐾 ∈ ( 𝐾 ... 𝑁 ) ) ) | |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝐾 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝐾 → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥 = 𝐾 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) ) |
| 11 | 7 10 | imbi12d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) ) ) ) |
| 13 | eleq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) | |
| 16 | 14 15 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
| 17 | 13 16 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) ) |
| 19 | eleq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) | |
| 20 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 21 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 22 | 20 21 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 23 | 19 22 | imbi12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 25 | eleq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) ) | |
| 26 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) | |
| 28 | 26 27 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 29 | 25 28 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) ) |
| 31 | eluzelz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ℤ ) | |
| 32 | seq1 | ⊢ ( 𝐾 ∈ ℤ → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) | |
| 33 | 1 31 32 | 3syl | ⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) |
| 34 | 2 33 | eqtr4d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) |
| 35 | 34 | a1d | ⊢ ( 𝜑 → ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) ) |
| 36 | peano2fzr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) | |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) |
| 38 | 37 | expr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) ) |
| 39 | 38 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
| 40 | oveq1 | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 41 | simpl | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 42 | uztrn | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 43 | 41 1 42 | syl2anr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 44 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 46 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 47 | 46 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 48 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 49 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) | |
| 50 | 48 49 | eqeq12d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 51 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 53 | eluzp1p1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) | |
| 54 | 53 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
| 55 | elfzuz3 | ⊢ ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) | |
| 56 | 55 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 57 | elfzuzb | ⊢ ( ( 𝑛 + 1 ) ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ↔ ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) | |
| 58 | 54 56 57 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) |
| 59 | 50 52 58 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
| 60 | 59 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 61 | 47 60 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 62 | 45 61 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 63 | 40 62 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 64 | 39 63 | animpimp2impd | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 65 | 12 18 24 30 35 64 | uzind4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 66 | 3 65 | mpcom | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 67 | 6 66 | mpd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) |