This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the operation .+ has an absorbing element Z (a.k.a. zero element), then any sequence containing a Z evaluates to Z . (Contributed by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqhomo.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqhomo.2 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
||
| seqz.3 | |- ( ( ph /\ x e. S ) -> ( Z .+ x ) = Z ) |
||
| seqz.4 | |- ( ( ph /\ x e. S ) -> ( x .+ Z ) = Z ) |
||
| seqz.5 | |- ( ph -> K e. ( M ... N ) ) |
||
| seqz.6 | |- ( ph -> N e. V ) |
||
| seqz.7 | |- ( ph -> ( F ` K ) = Z ) |
||
| Assertion | seqz | |- ( ph -> ( seq M ( .+ , F ) ` N ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqhomo.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqhomo.2 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
|
| 3 | seqz.3 | |- ( ( ph /\ x e. S ) -> ( Z .+ x ) = Z ) |
|
| 4 | seqz.4 | |- ( ( ph /\ x e. S ) -> ( x .+ Z ) = Z ) |
|
| 5 | seqz.5 | |- ( ph -> K e. ( M ... N ) ) |
|
| 6 | seqz.6 | |- ( ph -> N e. V ) |
|
| 7 | seqz.7 | |- ( ph -> ( F ` K ) = Z ) |
|
| 8 | elfzuz | |- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
|
| 9 | 5 8 | syl | |- ( ph -> K e. ( ZZ>= ` M ) ) |
| 10 | 5 | elfzelzd | |- ( ph -> K e. ZZ ) |
| 11 | seq1 | |- ( K e. ZZ -> ( seq K ( .+ , F ) ` K ) = ( F ` K ) ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( seq K ( .+ , F ) ` K ) = ( F ` K ) ) |
| 13 | 12 7 | eqtrd | |- ( ph -> ( seq K ( .+ , F ) ` K ) = Z ) |
| 14 | seqeq1 | |- ( K = M -> seq K ( .+ , F ) = seq M ( .+ , F ) ) |
|
| 15 | 14 | fveq1d | |- ( K = M -> ( seq K ( .+ , F ) ` K ) = ( seq M ( .+ , F ) ` K ) ) |
| 16 | 15 | eqeq1d | |- ( K = M -> ( ( seq K ( .+ , F ) ` K ) = Z <-> ( seq M ( .+ , F ) ` K ) = Z ) ) |
| 17 | 13 16 | syl5ibcom | |- ( ph -> ( K = M -> ( seq M ( .+ , F ) ` K ) = Z ) ) |
| 18 | eluzel2 | |- ( K e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 19 | 9 18 | syl | |- ( ph -> M e. ZZ ) |
| 20 | seqm1 | |- ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` K ) = ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ ( F ` K ) ) ) |
|
| 21 | 19 20 | sylan | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` K ) = ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ ( F ` K ) ) ) |
| 22 | 7 | adantr | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` K ) = Z ) |
| 23 | 22 | oveq2d | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ ( F ` K ) ) = ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ Z ) ) |
| 24 | oveq1 | |- ( x = ( seq M ( .+ , F ) ` ( K - 1 ) ) -> ( x .+ Z ) = ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ Z ) ) |
|
| 25 | 24 | eqeq1d | |- ( x = ( seq M ( .+ , F ) ` ( K - 1 ) ) -> ( ( x .+ Z ) = Z <-> ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ Z ) = Z ) ) |
| 26 | 4 | ralrimiva | |- ( ph -> A. x e. S ( x .+ Z ) = Z ) |
| 27 | 26 | adantr | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> A. x e. S ( x .+ Z ) = Z ) |
| 28 | eluzp1m1 | |- ( ( M e. ZZ /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) |
|
| 29 | 19 28 | sylan | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` M ) ) |
| 30 | fzssp1 | |- ( M ... ( K - 1 ) ) C_ ( M ... ( ( K - 1 ) + 1 ) ) |
|
| 31 | 10 | zcnd | |- ( ph -> K e. CC ) |
| 32 | ax-1cn | |- 1 e. CC |
|
| 33 | npcan | |- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
|
| 34 | 31 32 33 | sylancl | |- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
| 35 | 34 | oveq2d | |- ( ph -> ( M ... ( ( K - 1 ) + 1 ) ) = ( M ... K ) ) |
| 36 | 30 35 | sseqtrid | |- ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... K ) ) |
| 37 | elfzuz3 | |- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
|
| 38 | 5 37 | syl | |- ( ph -> N e. ( ZZ>= ` K ) ) |
| 39 | fzss2 | |- ( N e. ( ZZ>= ` K ) -> ( M ... K ) C_ ( M ... N ) ) |
|
| 40 | 38 39 | syl | |- ( ph -> ( M ... K ) C_ ( M ... N ) ) |
| 41 | 36 40 | sstrd | |- ( ph -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) |
| 42 | 41 | adantr | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... N ) ) |
| 43 | 42 | sselda | |- ( ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> x e. ( M ... N ) ) |
| 44 | 2 | adantlr | |- ( ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
| 45 | 43 44 | syldan | |- ( ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) /\ x e. ( M ... ( K - 1 ) ) ) -> ( F ` x ) e. S ) |
| 46 | 1 | adantlr | |- ( ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 47 | 29 45 46 | seqcl | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( K - 1 ) ) e. S ) |
| 48 | 25 27 47 | rspcdva | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ Z ) = Z ) |
| 49 | 23 48 | eqtrd | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( K - 1 ) ) .+ ( F ` K ) ) = Z ) |
| 50 | 21 49 | eqtrd | |- ( ( ph /\ K e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` K ) = Z ) |
| 51 | 50 | ex | |- ( ph -> ( K e. ( ZZ>= ` ( M + 1 ) ) -> ( seq M ( .+ , F ) ` K ) = Z ) ) |
| 52 | uzp1 | |- ( K e. ( ZZ>= ` M ) -> ( K = M \/ K e. ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 53 | 9 52 | syl | |- ( ph -> ( K = M \/ K e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 54 | 17 51 53 | mpjaod | |- ( ph -> ( seq M ( .+ , F ) ` K ) = Z ) |
| 55 | 54 7 | eqtr4d | |- ( ph -> ( seq M ( .+ , F ) ` K ) = ( F ` K ) ) |
| 56 | eqidd | |- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> ( F ` x ) = ( F ` x ) ) |
|
| 57 | 9 55 38 56 | seqfveq2 | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq K ( .+ , F ) ` N ) ) |
| 58 | fvex | |- ( F ` K ) e. _V |
|
| 59 | 58 | elsn | |- ( ( F ` K ) e. { Z } <-> ( F ` K ) = Z ) |
| 60 | 7 59 | sylibr | |- ( ph -> ( F ` K ) e. { Z } ) |
| 61 | simprl | |- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> x e. { Z } ) |
|
| 62 | velsn | |- ( x e. { Z } <-> x = Z ) |
|
| 63 | 61 62 | sylib | |- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> x = Z ) |
| 64 | 63 | oveq1d | |- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> ( x .+ y ) = ( Z .+ y ) ) |
| 65 | oveq2 | |- ( x = y -> ( Z .+ x ) = ( Z .+ y ) ) |
|
| 66 | 65 | eqeq1d | |- ( x = y -> ( ( Z .+ x ) = Z <-> ( Z .+ y ) = Z ) ) |
| 67 | 3 | ralrimiva | |- ( ph -> A. x e. S ( Z .+ x ) = Z ) |
| 68 | 67 | adantr | |- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> A. x e. S ( Z .+ x ) = Z ) |
| 69 | simprr | |- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> y e. S ) |
|
| 70 | 66 68 69 | rspcdva | |- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> ( Z .+ y ) = Z ) |
| 71 | 64 70 | eqtrd | |- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> ( x .+ y ) = Z ) |
| 72 | ovex | |- ( x .+ y ) e. _V |
|
| 73 | 72 | elsn | |- ( ( x .+ y ) e. { Z } <-> ( x .+ y ) = Z ) |
| 74 | 71 73 | sylibr | |- ( ( ph /\ ( x e. { Z } /\ y e. S ) ) -> ( x .+ y ) e. { Z } ) |
| 75 | peano2uz | |- ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
|
| 76 | 9 75 | syl | |- ( ph -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
| 77 | fzss1 | |- ( ( K + 1 ) e. ( ZZ>= ` M ) -> ( ( K + 1 ) ... N ) C_ ( M ... N ) ) |
|
| 78 | 76 77 | syl | |- ( ph -> ( ( K + 1 ) ... N ) C_ ( M ... N ) ) |
| 79 | 78 | sselda | |- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> x e. ( M ... N ) ) |
| 80 | 79 2 | syldan | |- ( ( ph /\ x e. ( ( K + 1 ) ... N ) ) -> ( F ` x ) e. S ) |
| 81 | 60 74 38 80 | seqcl2 | |- ( ph -> ( seq K ( .+ , F ) ` N ) e. { Z } ) |
| 82 | elsni | |- ( ( seq K ( .+ , F ) ` N ) e. { Z } -> ( seq K ( .+ , F ) ` N ) = Z ) |
|
| 83 | 81 82 | syl | |- ( ph -> ( seq K ( .+ , F ) ` N ) = Z ) |
| 84 | 57 83 | eqtrd | |- ( ph -> ( seq M ( .+ , F ) ` N ) = Z ) |