This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcl2.1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝐶 ) | |
| seqcl2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐶 ) | ||
| seqcl2.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqcl2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) | ||
| Assertion | seqcl2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcl2.1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝐶 ) | |
| 2 | seqcl2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐶 ) | |
| 3 | seqcl2.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | seqcl2.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) | |
| 5 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = 𝑀 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝐶 ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝐶 ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝐶 ) ) ) ) |
| 12 | eleq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 13 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 ) ) |
| 15 | 12 14 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 ) ) ) ) |
| 17 | eleq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 18 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 19 | 18 | eleq1d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐶 ) ) |
| 20 | 17 19 | imbi12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐶 ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐶 ) ) ) ) |
| 22 | eleq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 23 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝐶 ) ) |
| 25 | 22 24 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝐶 ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ∈ 𝐶 ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝐶 ) ) ) ) |
| 27 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 28 | 27 | eleq1d | ⊢ ( 𝑀 ∈ ℤ → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑀 ) ∈ 𝐶 ) ) |
| 29 | 1 28 | imbitrrid | ⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝐶 ) ) |
| 30 | 29 | a1dd | ⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ∈ 𝐶 ) ) ) |
| 31 | peano2fzr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 33 | 32 | expr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 34 | 33 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 36 | 35 | eleq1d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝐷 ) ) |
| 37 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
| 39 | eluzp1p1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 40 | 39 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 41 | elfzuz3 | ⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) | |
| 42 | 41 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 43 | elfzuzb | ⊢ ( ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) | |
| 44 | 40 42 43 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 45 | 36 38 44 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝐷 ) |
| 46 | 2 | caovclg | ⊢ ( ( 𝜑 ∧ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝐷 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ 𝐶 ) |
| 47 | 46 | ex | ⊢ ( 𝜑 → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝐷 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ 𝐶 ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝐷 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ 𝐶 ) ) |
| 49 | 45 48 | mpan2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ 𝐶 ) ) |
| 50 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 51 | 50 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 52 | 51 | eleq1d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐶 ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∈ 𝐶 ) ) |
| 53 | 49 52 | sylibrd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐶 ) ) |
| 54 | 34 53 | animpimp2impd | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝐶 ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐶 ) ) ) ) |
| 55 | 11 16 21 26 30 54 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝐶 ) ) ) |
| 56 | 3 55 | mpcom | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝐶 ) ) |
| 57 | 6 56 | mpd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝐶 ) |