This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removing the first term from a sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqsplit.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqsplit.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | ||
| seqsplit.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | ||
| seq1p.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| seq1p.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | ||
| Assertion | seq1p | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqsplit.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqsplit.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 3 | seqsplit.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 4 | seq1p.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | seq1p.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 6 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | 1 2 3 7 5 | seqsplit | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 9 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 11 | 10 | oveq1d | ⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) = ( ( 𝐹 ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 12 | 8 11 | eqtrd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |