This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes of height 1. (Contributed by AV, 9-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satfv1.s | ⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) | |
| Assertion | satfv1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 1o ) = ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv1.s | ⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) | |
| 2 | df-1o | ⊢ 1o = suc ∅ | |
| 3 | 2 | fveq2i | ⊢ ( 𝑆 ‘ 1o ) = ( 𝑆 ‘ suc ∅ ) |
| 4 | 3 | a1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 1o ) = ( 𝑆 ‘ suc ∅ ) ) |
| 5 | peano1 | ⊢ ∅ ∈ ω | |
| 6 | 1 | satfvsuc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ ω ) → ( 𝑆 ‘ suc ∅ ) = ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) } ) ) |
| 7 | 5 6 | mp3an3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ suc ∅ ) = ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) } ) ) |
| 8 | 1 | satfv0 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ ∅ ) = { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) |
| 9 | 8 | rexeqdv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ∃ 𝑜 ∈ { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ) ) |
| 10 | eqid | ⊢ { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } = { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } | |
| 11 | vex | ⊢ 𝑒 ∈ V | |
| 12 | vex | ⊢ 𝑏 ∈ V | |
| 13 | 11 12 | op1std | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 1st ‘ 𝑜 ) = 𝑒 ) |
| 14 | 13 | oveq1d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ↔ 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ) ) |
| 16 | 11 12 | op2ndd | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 2nd ‘ 𝑜 ) = 𝑏 ) |
| 17 | 16 | ineq1d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) = ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) |
| 18 | 17 | difeq2d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) |
| 19 | 18 | eqeq2d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ) |
| 20 | 15 19 | anbi12d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ) ) |
| 21 | 20 | rexbidv | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ) ) |
| 22 | eqidd | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → 𝑛 = 𝑛 ) | |
| 23 | 22 13 | goaleq12d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) = ∀𝑔 𝑛 𝑒 ) |
| 24 | 23 | eqeq2d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ↔ 𝑥 = ∀𝑔 𝑛 𝑒 ) ) |
| 25 | 16 | eleq2d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) ↔ ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ) ) |
| 26 | 25 | ralbidv | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) ↔ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ) ) |
| 27 | 26 | rabbidv | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) |
| 28 | 27 | eqeq2d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) |
| 29 | 24 28 | anbi12d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ↔ ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) |
| 30 | 29 | rexbidv | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) |
| 31 | 21 30 | orbi12d | ⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 32 | 10 31 | rexopabb | ⊢ ( ∃ 𝑜 ∈ { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 33 | 9 32 | bitrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 34 | 1 | satfv0 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ ∅ ) = { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } ) |
| 35 | 34 | rexeqdv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ∃ 𝑝 ∈ { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ) ) |
| 36 | eqid | ⊢ { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } = { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } | |
| 37 | vex | ⊢ 𝑐 ∈ V | |
| 38 | vex | ⊢ 𝑑 ∈ V | |
| 39 | 37 38 | op1std | ⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 1st ‘ 𝑝 ) = 𝑐 ) |
| 40 | 39 | oveq2d | ⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) = ( 𝑒 ⊼𝑔 𝑐 ) ) |
| 41 | 40 | eqeq2d | ⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ↔ 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ) ) |
| 42 | 37 38 | op2ndd | ⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 2nd ‘ 𝑝 ) = 𝑑 ) |
| 43 | 42 | ineq2d | ⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) = ( 𝑏 ∩ 𝑑 ) ) |
| 44 | 43 | difeq2d | ⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) |
| 45 | 44 | eqeq2d | ⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 46 | 41 45 | anbi12d | ⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 47 | 36 46 | rexopabb | ⊢ ( ∃ 𝑝 ∈ { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 48 | 35 47 | bitrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ) ) |
| 49 | 48 | orbi1d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ↔ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 50 | 49 | anbi2d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 51 | 50 | 2exbidv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 52 | r19.41vv | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) | |
| 53 | oveq1 | ⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑒 ⊼𝑔 𝑐 ) = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ) | |
| 54 | 53 | eqeq2d | ⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ↔ 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ) ) |
| 55 | ineq1 | ⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( 𝑏 ∩ 𝑑 ) = ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) | |
| 56 | 55 | difeq2d | ⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) |
| 57 | 56 | eqeq2d | ⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) |
| 58 | 54 57 | bi2anan9 | ⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 59 | 58 | anbi2d | ⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) ) |
| 60 | 59 | 2exbidv | ⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) ) |
| 61 | eqidd | ⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑛 = 𝑛 ) | |
| 62 | id | ⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ) | |
| 63 | 61 62 | goaleq12d | ⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ∀𝑔 𝑛 𝑒 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ) |
| 64 | 63 | eqeq2d | ⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 = ∀𝑔 𝑛 𝑒 ↔ 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 65 | nfrab1 | ⊢ Ⅎ 𝑎 { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } | |
| 66 | 65 | nfeq2 | ⊢ Ⅎ 𝑎 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } |
| 67 | eleq2 | ⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ↔ ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) | |
| 68 | 67 | ralbidv | ⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ↔ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 69 | 66 68 | rabbid | ⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) |
| 70 | 69 | eqeq2d | ⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) |
| 71 | 64 70 | bi2anan9 | ⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ↔ ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 72 | 71 | rexbidv | ⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ↔ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 73 | 60 72 | orbi12d | ⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ↔ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) |
| 74 | 73 | adantl | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ↔ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) |
| 75 | r19.41vv | ⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) | |
| 76 | oveq2 | ⊢ ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) → ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) | |
| 77 | 76 | adantr | ⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 78 | 77 | eqeq2d | ⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ↔ 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 79 | ineq2 | ⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) = ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) | |
| 80 | 79 | difeq2d | ⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) |
| 81 | inrab | ⊢ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } | |
| 82 | 81 | difeq2i | ⊢ ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) = ( ( 𝑀 ↑m ω ) ∖ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 83 | notrab | ⊢ ( ( 𝑀 ↑m ω ) ∖ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ¬ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } | |
| 84 | ianor | ⊢ ( ¬ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) | |
| 85 | 84 | rabbii | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ¬ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } |
| 86 | 82 83 85 | 3eqtri | ⊢ ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } |
| 87 | 80 86 | eqtrdi | ⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 88 | 87 | eqeq2d | ⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 89 | 88 | adantl | ⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 90 | 78 89 | anbi12d | ⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ↔ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 91 | 90 | biimpa | ⊢ ( ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 92 | 91 | reximi | ⊢ ( ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 93 | 92 | reximi | ⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 94 | 75 93 | sylbir | ⊢ ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 95 | 94 | exlimivv | ⊢ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 96 | 95 | a1i | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 97 | simpr | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → 𝑛 ∈ ω ) | |
| 98 | simpll | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → 𝑖 ∈ ω ) | |
| 99 | simplr | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → 𝑗 ∈ ω ) | |
| 100 | fveq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ‘ 𝑖 ) = ( 𝑏 ‘ 𝑖 ) ) | |
| 101 | fveq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 ‘ 𝑗 ) = ( 𝑏 ‘ 𝑗 ) ) | |
| 102 | 100 101 | breq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) ) ) |
| 103 | 102 | cbvrabv | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } |
| 104 | 103 | eleq2i | ⊢ ( ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } ) |
| 105 | 104 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } ) |
| 106 | 105 | rabbii | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } } |
| 107 | satfv1lem | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) | |
| 108 | 106 107 | eqtrid | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) |
| 109 | 97 98 99 108 | syl3anc | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) |
| 110 | 109 | eqeq2d | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) |
| 111 | 110 | biimpd | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } → 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) |
| 112 | 111 | anim2d | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) → ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 113 | 112 | reximdva | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) → ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 114 | 113 | adantr | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) → ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 115 | 96 114 | orim12d | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 116 | 74 115 | sylbid | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 117 | 116 | expimpd | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 118 | 117 | reximdva | ⊢ ( 𝑖 ∈ ω → ( ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 119 | 118 | reximia | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 120 | 52 119 | sylbir | ⊢ ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 121 | 120 | exlimivv | ⊢ ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 122 | ovex | ⊢ ( 𝑖 ∈𝑔 𝑗 ) ∈ V | |
| 123 | ovex | ⊢ ( 𝑀 ↑m ω ) ∈ V | |
| 124 | 123 | rabex | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∈ V |
| 125 | 122 124 | pm3.2i | ⊢ ( ( 𝑖 ∈𝑔 𝑗 ) ∈ V ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∈ V ) |
| 126 | eqid | ⊢ ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) | |
| 127 | eqid | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } | |
| 128 | 126 127 | pm3.2i | ⊢ ( ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) |
| 129 | 86 | eqcomi | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) |
| 130 | 129 | eqeq2i | ⊢ ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) |
| 131 | 130 | biimpi | ⊢ ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } → 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) |
| 132 | 131 | anim2i | ⊢ ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) |
| 133 | ovex | ⊢ ( 𝑘 ∈𝑔 𝑙 ) ∈ V | |
| 134 | 123 | rabex | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ∈ V |
| 135 | eqeq1 | ⊢ ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) → ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ↔ ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ) ) | |
| 136 | eqeq1 | ⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) | |
| 137 | 135 136 | bi2anan9 | ⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ↔ ( ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) |
| 138 | 76 | eqeq2d | ⊢ ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ↔ 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 139 | 80 | eqeq2d | ⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) |
| 140 | 138 139 | bi2anan9 | ⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ↔ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) ) |
| 141 | 137 140 | anbi12d | ⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ( ( ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) ) ) |
| 142 | 133 134 141 | spc2ev | ⊢ ( ( ( ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) → ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 143 | 128 132 142 | sylancr | ⊢ ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 144 | 143 | reximi | ⊢ ( ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑙 ∈ ω ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 145 | 144 | reximi | ⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 146 | 75 | bicomi | ⊢ ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 147 | 146 | 2exbii | ⊢ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑐 ∃ 𝑑 ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 148 | 2ex2rexrot | ⊢ ( ∃ 𝑐 ∃ 𝑑 ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) | |
| 149 | 147 148 | bitri | ⊢ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 150 | 145 149 | sylibr | ⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 151 | 150 | a1i | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) ) |
| 152 | 109 | eqcomd | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) |
| 153 | 152 | eqeq2d | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) |
| 154 | 153 | biimpd | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } → 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) |
| 155 | 154 | anim2d | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) → ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 156 | 155 | reximdva | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) → ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 157 | 151 156 | orim12d | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) |
| 158 | 157 | imp | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) → ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 159 | eqid | ⊢ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) | |
| 160 | eqid | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } | |
| 161 | 159 160 | pm3.2i | ⊢ ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 162 | 158 161 | jctil | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) → ( ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) |
| 163 | eqeq1 | ⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 164 | eqeq1 | ⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) | |
| 165 | 163 164 | bi2anan9 | ⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 166 | 165 73 | anbi12d | ⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ( ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) ) |
| 167 | 166 | spc2egv | ⊢ ( ( ( 𝑖 ∈𝑔 𝑗 ) ∈ V ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∈ V ) → ( ( ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) → ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 168 | 125 162 167 | mpsyl | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) → ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 169 | 168 | ex | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 170 | 169 | reximdva | ⊢ ( 𝑖 ∈ ω → ( ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ∃ 𝑗 ∈ ω ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 171 | 170 | reximia | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 172 | 52 | bicomi | ⊢ ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 173 | 172 | 2exbii | ⊢ ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑒 ∃ 𝑏 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 174 | 2ex2rexrot | ⊢ ( ∃ 𝑒 ∃ 𝑏 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) | |
| 175 | 173 174 | bitri | ⊢ ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 176 | 171 175 | sylibr | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 177 | 121 176 | impbii | ⊢ ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 178 | 51 177 | bitrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 179 | 33 178 | bitrd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 180 | 179 | opabbidv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) |
| 181 | 180 | uneq2d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) } ) = ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| 182 | 4 7 181 | 3eqtrd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 1o ) = ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |