This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | notrab | ⊢ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difab | ⊢ ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∖ { 𝑥 ∣ 𝜑 } ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) } | |
| 2 | difin | ⊢ ( 𝐴 ∖ ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) ) = ( 𝐴 ∖ { 𝑥 ∣ 𝜑 } ) | |
| 3 | dfrab3 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) | |
| 4 | 3 | difeq2i | ⊢ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) = ( 𝐴 ∖ ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) ) |
| 5 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 | |
| 6 | 5 | difeq1i | ⊢ ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∖ { 𝑥 ∣ 𝜑 } ) = ( 𝐴 ∖ { 𝑥 ∣ 𝜑 } ) |
| 7 | 2 4 6 | 3eqtr4i | ⊢ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) = ( { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∖ { 𝑥 ∣ 𝜑 } ) |
| 8 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝜑 ) } | |
| 9 | 1 7 8 | 3eqtr4i | ⊢ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } |