This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of r19.41v with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.41vv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ 𝜓 ) ) | |
| 2 | 1 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ 𝜓 ) ) |
| 3 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ 𝜓 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ 𝜓 ) ) |