This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spc2ev.1 | ⊢ 𝐴 ∈ V | |
| spc2ev.2 | ⊢ 𝐵 ∈ V | ||
| spc2ev.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | spc2ev | ⊢ ( 𝜓 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2ev.1 | ⊢ 𝐴 ∈ V | |
| 2 | spc2ev.2 | ⊢ 𝐵 ∈ V | |
| 3 | spc2ev.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 3 | spc2egv | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 5 | 1 2 4 | mp2an | ⊢ ( 𝜓 → ∃ 𝑥 ∃ 𝑦 𝜑 ) |