This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binary relation of a satisfaction predicate as function over wff codes is an increasing chain (with respect to inclusion). (Contributed by AV, 15-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satfsschain.s | ⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) | |
| Assertion | satfsschain | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐵 ⊆ 𝐴 → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfsschain.s | ⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) | |
| 2 | fveq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 𝐵 ) ) | |
| 3 | 2 | sseq2d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐵 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑏 = 𝐵 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑏 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐵 ) ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑏 = 𝑎 → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 𝑎 ) ) | |
| 6 | 5 | sseq2d | ⊢ ( 𝑏 = 𝑎 → ( ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑏 = 𝑎 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑏 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑏 = suc 𝑎 → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ suc 𝑎 ) ) | |
| 9 | 8 | sseq2d | ⊢ ( 𝑏 = suc 𝑎 → ( ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ suc 𝑎 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑏 = suc 𝑎 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑏 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ suc 𝑎 ) ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑏 = 𝐴 → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 𝐴 ) ) | |
| 12 | 11 | sseq2d | ⊢ ( 𝑏 = 𝐴 → ( ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐴 ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑏 = 𝐴 → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑏 ) ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 14 | ssidd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐵 ) ) | |
| 15 | 14 | a1i | ⊢ ( 𝐵 ∈ ω → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐵 ) ) ) |
| 16 | pm2.27 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) ) | |
| 17 | 16 | adantl | ⊢ ( ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) ) |
| 18 | simpr | ⊢ ( ( ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) | |
| 19 | ssun1 | ⊢ ( 𝑆 ‘ 𝑎 ) ⊆ ( ( 𝑆 ‘ 𝑎 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑎 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑎 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑧 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑘 ∈ 𝑀 ( { 〈 𝑖 , 𝑘 〉 } ∪ ( 𝑧 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) | |
| 20 | simpl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 𝑀 ∈ 𝑉 ) | |
| 21 | simpr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 𝐸 ∈ 𝑊 ) | |
| 22 | simplll | ⊢ ( ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → 𝑎 ∈ ω ) | |
| 23 | 1 | satfvsuc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑎 ∈ ω ) → ( 𝑆 ‘ suc 𝑎 ) = ( ( 𝑆 ‘ 𝑎 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑎 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑎 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑧 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑘 ∈ 𝑀 ( { 〈 𝑖 , 𝑘 〉 } ∪ ( 𝑧 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 24 | 20 21 22 23 | syl2an23an | ⊢ ( ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( 𝑆 ‘ suc 𝑎 ) = ( ( 𝑆 ‘ 𝑎 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑎 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑎 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑧 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑘 ∈ 𝑀 ( { 〈 𝑖 , 𝑘 〉 } ∪ ( 𝑧 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 25 | 19 24 | sseqtrrid | ⊢ ( ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( 𝑆 ‘ 𝑎 ) ⊆ ( 𝑆 ‘ suc 𝑎 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) → ( 𝑆 ‘ 𝑎 ) ⊆ ( 𝑆 ‘ suc 𝑎 ) ) |
| 27 | 18 26 | sstrd | ⊢ ( ( ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ suc 𝑎 ) ) |
| 28 | 27 | ex | ⊢ ( ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ suc 𝑎 ) ) ) |
| 29 | 17 28 | syld | ⊢ ( ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ suc 𝑎 ) ) ) |
| 30 | 29 | ex | ⊢ ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ suc 𝑎 ) ) ) ) |
| 31 | 30 | com23 | ⊢ ( ( ( 𝑎 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑎 ) → ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝑎 ) ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ suc 𝑎 ) ) ) ) |
| 32 | 4 7 10 13 15 31 | findsg | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐴 ) ) ) |
| 33 | 32 | ex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ⊆ 𝐴 → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 34 | 33 | com23 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝐵 ⊆ 𝐴 → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 35 | 34 | impcom | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝐵 ⊆ 𝐴 → ( 𝑆 ‘ 𝐵 ) ⊆ ( 𝑆 ‘ 𝐴 ) ) ) |