This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spc2egv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | spc2egv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2egv.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 3 | elisset | ⊢ ( 𝐵 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐵 ) | |
| 4 | 2 3 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 5 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 7 | 1 | biimprcd | ⊢ ( 𝜓 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝜑 ) ) |
| 8 | 7 | 2eximdv | ⊢ ( 𝜓 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 9 | 6 8 | syl5com | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 𝜑 ) ) |