This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes at (/) . (Contributed by AV, 8-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satfv0.s | ⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) | |
| Assertion | satfv0 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv0.s | ⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) | |
| 2 | peano1 | ⊢ ∅ ∈ ω | |
| 3 | elelsuc | ⊢ ( ∅ ∈ ω → ∅ ∈ suc ω ) | |
| 4 | 2 3 | mp1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ∅ ∈ suc ω ) |
| 5 | 1 | satfvsucom | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ suc ω ) → ( 𝑆 ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ∅ ) ) |
| 6 | 4 5 | mpd3an3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ∅ ) ) |
| 7 | goelel3xp | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖 ∈𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) ) | |
| 8 | eleq1 | ⊢ ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 ∈ ( ω × ( ω × ω ) ) ↔ ( 𝑖 ∈𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) ) ) | |
| 9 | 7 8 | syl5ibrcom | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) |
| 10 | 9 | adantrd | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) |
| 11 | 10 | pm4.71d | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) ) |
| 12 | 11 | 2rexbiia | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) |
| 13 | r19.41vv | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ↔ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) | |
| 14 | ancom | ⊢ ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) ↔ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) | |
| 15 | 12 13 14 | 3bitri | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 16 | 15 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) } |
| 17 | omex | ⊢ ω ∈ V | |
| 18 | 17 17 | xpex | ⊢ ( ω × ω ) ∈ V |
| 19 | xpexg | ⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → ( ω × ( ω × ω ) ) ∈ V ) | |
| 20 | oveq1 | ⊢ ( 𝑖 = 𝑚 → ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑗 ) ) | |
| 21 | 20 | eqeq2d | ⊢ ( 𝑖 = 𝑚 → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑥 = ( 𝑚 ∈𝑔 𝑗 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑖 = 𝑚 → ( 𝑎 ‘ 𝑖 ) = ( 𝑎 ‘ 𝑚 ) ) | |
| 23 | 22 | breq1d | ⊢ ( 𝑖 = 𝑚 → ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) |
| 24 | 23 | rabbidv | ⊢ ( 𝑖 = 𝑚 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 25 | 24 | eqeq2d | ⊢ ( 𝑖 = 𝑚 → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 26 | 21 25 | anbi12d | ⊢ ( 𝑖 = 𝑚 → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( 𝑥 = ( 𝑚 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 27 | oveq2 | ⊢ ( 𝑗 = 𝑛 → ( 𝑚 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) | |
| 28 | 27 | eqeq2d | ⊢ ( 𝑗 = 𝑛 → ( 𝑥 = ( 𝑚 ∈𝑔 𝑗 ) ↔ 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 29 | fveq2 | ⊢ ( 𝑗 = 𝑛 → ( 𝑎 ‘ 𝑗 ) = ( 𝑎 ‘ 𝑛 ) ) | |
| 30 | 29 | breq2d | ⊢ ( 𝑗 = 𝑛 → ( ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) ) ) |
| 31 | 30 | rabbidv | ⊢ ( 𝑗 = 𝑛 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) |
| 32 | 31 | eqeq2d | ⊢ ( 𝑗 = 𝑛 → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) ) |
| 33 | 28 32 | anbi12d | ⊢ ( 𝑗 = 𝑛 → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) ) ) |
| 34 | 26 33 | cbvrex2vw | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) ) |
| 35 | eqeq1 | ⊢ ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ↔ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) ) | |
| 36 | 35 | adantl | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ↔ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) ) |
| 37 | goeleq12bg | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ↔ ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑛 ) ) ) | |
| 38 | 22 | eqcomd | ⊢ ( 𝑖 = 𝑚 → ( 𝑎 ‘ 𝑚 ) = ( 𝑎 ‘ 𝑖 ) ) |
| 39 | 29 | eqcomd | ⊢ ( 𝑗 = 𝑛 → ( 𝑎 ‘ 𝑛 ) = ( 𝑎 ‘ 𝑗 ) ) |
| 40 | 38 39 | breqan12d | ⊢ ( ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑛 ) → ( ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) ↔ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) |
| 41 | 40 | rabbidv | ⊢ ( ( 𝑖 = 𝑚 ∧ 𝑗 = 𝑛 ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 42 | 37 41 | biimtrdi | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 43 | 42 | imp | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 44 | eqeq12 | ⊢ ( ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( 𝑦 = 𝑧 ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) | |
| 45 | 43 44 | syl5ibrcom | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) ) → ( ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) |
| 46 | 45 | exp4b | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) |
| 48 | 36 47 | sylbid | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) |
| 49 | 48 | impd | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) |
| 50 | 49 | com23 | ⊢ ( ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) ∧ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 51 | 50 | expimpd | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 52 | 51 | rexlimdvva | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 53 | 52 | com23 | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 54 | 53 | rexlimivv | ⊢ ( ∃ 𝑚 ∈ ω ∃ 𝑛 ∈ ω ( 𝑥 = ( 𝑚 ∈𝑔 𝑛 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑚 ) 𝐸 ( 𝑎 ‘ 𝑛 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) |
| 55 | 34 54 | sylbi | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) |
| 56 | 55 | imp | ⊢ ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → 𝑦 = 𝑧 ) |
| 57 | 56 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → 𝑦 = 𝑧 ) |
| 58 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) | |
| 59 | 58 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 60 | 59 | 2rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 61 | 60 | mo4 | ⊢ ( ∃* 𝑦 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → 𝑦 = 𝑧 ) ) |
| 62 | 57 61 | mpbir | ⊢ ∃* 𝑦 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 63 | moabex | ⊢ ( ∃* 𝑦 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → { 𝑦 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ∈ V ) | |
| 64 | 62 63 | mp1i | ⊢ ( ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) ∧ 𝑥 ∈ ( ω × ( ω × ω ) ) ) → { 𝑦 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ∈ V ) |
| 65 | 19 64 | opabex3d | ⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) } ∈ V ) |
| 66 | 17 18 65 | mp2an | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ω × ( ω × ω ) ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) } ∈ V |
| 67 | 16 66 | eqeltri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ∈ V |
| 68 | 67 | rdg0 | ⊢ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑖 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } |
| 69 | 6 68 | eqtrdi | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) |