This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| Assertion | rrxbase | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 3 | 1 | rrxval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 5 | eqid | ⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 7 | 5 6 | tcphbas | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 8 | 4 7 | eqtr4di | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 9 | 2 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐻 ) ) |
| 10 | refld | ⊢ ℝfld ∈ Field | |
| 11 | eqid | ⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) | |
| 12 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 13 | re0g | ⊢ 0 = ( 0g ‘ ℝfld ) | |
| 14 | eqid | ⊢ { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } | |
| 15 | 11 12 13 14 | frlmbas | ⊢ ( ( ℝfld ∈ Field ∧ 𝐼 ∈ 𝑉 ) → { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 16 | 10 15 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 17 | 8 9 16 | 3eqtr4d | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } ) |