This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| Assertion | rrxnm | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) ) = ( norm ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 3 | resrng | ⊢ ℝfld ∈ *-Ring | |
| 4 | srngring | ⊢ ( ℝfld ∈ *-Ring → ℝfld ∈ Ring ) | |
| 5 | 3 4 | ax-mp | ⊢ ℝfld ∈ Ring |
| 6 | eqid | ⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) | |
| 7 | 6 | frlmlmod | ⊢ ( ( ℝfld ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( ℝfld freeLMod 𝐼 ) ∈ LMod ) |
| 8 | 5 7 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld freeLMod 𝐼 ) ∈ LMod ) |
| 9 | lmodgrp | ⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ LMod → ( ℝfld freeLMod 𝐼 ) ∈ Grp ) | |
| 10 | eqid | ⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 11 | eqid | ⊢ ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) | |
| 12 | eqid | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 13 | eqid | ⊢ ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 14 | 10 11 12 13 | tchnmfval | ⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ Grp → ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) ) ) |
| 15 | 8 9 14 | 3syl | ⊢ ( 𝐼 ∈ 𝑉 → ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) ) ) |
| 16 | 1 | rrxval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( norm ‘ 𝐻 ) = ( norm ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 18 | 16 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 19 | 10 12 | tcphbas | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 20 | 18 2 19 | 3eqtr4g | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 21 | 1 2 | rrxbase | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 = { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } ) |
| 22 | ssrab2 | ⊢ { 𝑓 ∈ ( ℝ ↑m 𝐼 ) ∣ 𝑓 finSupp 0 } ⊆ ( ℝ ↑m 𝐼 ) | |
| 23 | 21 22 | eqsstrdi | ⊢ ( 𝐼 ∈ 𝑉 → 𝐵 ⊆ ( ℝ ↑m 𝐼 ) ) |
| 24 | 23 | sselda | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) |
| 25 | 16 | fveq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ 𝐻 ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 26 | 1 2 | rrxip | ⊢ ( 𝐼 ∈ 𝑉 → ( ℎ ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝐻 ) ) |
| 27 | 10 13 | tcphip | ⊢ ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 28 | 27 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 29 | 25 26 28 | 3eqtr4rd | ⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ℎ ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ℎ ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 31 | simprl | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ℎ = 𝑓 ) | |
| 32 | 31 | fveq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( ℎ ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 33 | simprr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → 𝑔 = 𝑓 ) | |
| 34 | 33 | fveq1d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( 𝑔 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 35 | 32 34 | oveq12d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 37 | elmapi | ⊢ ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) → 𝑓 : 𝐼 ⟶ ℝ ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑓 : 𝐼 ⟶ ℝ ) |
| 39 | 38 | ffvelcdmda | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 40 | 39 | recnd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
| 41 | 40 | adantlr | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
| 42 | 41 | sqvald | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑥 ) ) ) |
| 43 | 36 42 | eqtr4d | ⊢ ( ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) |
| 44 | 43 | mpteq2dva | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) |
| 45 | 44 | oveq2d | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) ∧ ( ℎ = 𝑓 ∧ 𝑔 = 𝑓 ) ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ℎ ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 46 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) | |
| 47 | ovexd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ∈ V ) | |
| 48 | 30 45 46 46 47 | ovmpod | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 49 | 24 48 | syldan | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 50 | 49 | eqcomd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ) → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) = ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) |
| 51 | 50 | fveq2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑓 ∈ 𝐵 ) → ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) = ( √ ‘ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) ) |
| 52 | 20 51 | mpteq12dva | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ↦ ( √ ‘ ( 𝑓 ( ·𝑖 ‘ ( ℝfld freeLMod 𝐼 ) ) 𝑓 ) ) ) ) |
| 53 | 15 17 52 | 3eqtr4rd | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ 𝐵 ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ↑ 2 ) ) ) ) ) = ( norm ‘ 𝐻 ) ) |