This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| rrxvsca.r | ⊢ ∙ = ( ·𝑠 ‘ 𝐻 ) | ||
| rrxvsca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| rrxvsca.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | ||
| rrxvsca.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| rrxvsca.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐻 ) ) | ||
| Assertion | rrxvsca | ⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrxbase.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 3 | rrxvsca.r | ⊢ ∙ = ( ·𝑠 ‘ 𝐻 ) | |
| 4 | rrxvsca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 5 | rrxvsca.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | |
| 6 | rrxvsca.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 7 | rrxvsca.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐻 ) ) | |
| 8 | 1 | rrxval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝐻 ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 11 | 3 10 | eqtrid | ⊢ ( 𝜑 → ∙ = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 12 | 11 | oveqd | ⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ) |
| 13 | 12 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ‘ 𝐽 ) ) |
| 14 | eqid | ⊢ ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 ) | |
| 15 | eqid | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 16 | rebase | ⊢ ℝ = ( Base ‘ ℝfld ) | |
| 17 | 9 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 18 | eqid | ⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 19 | 18 15 | tcphbas | ⊢ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 20 | 17 19 | eqtr4di | ⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 21 | 7 20 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 22 | eqid | ⊢ ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) | |
| 23 | 18 22 | tcphvsca | ⊢ ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 24 | 23 | eqcomi | ⊢ ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 25 | remulr | ⊢ · = ( .r ‘ ℝfld ) | |
| 26 | 14 15 16 4 6 21 5 24 25 | frlmvscaval | ⊢ ( 𝜑 → ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |
| 27 | 13 26 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |