This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define n-dimensional Euclidean space as a metric space with the standard Euclidean norm given by the quadratic mean. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rrn | ⊢ ℝn = ( 𝑖 ∈ Fin ↦ ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crrn | ⊢ ℝn | |
| 1 | vi | ⊢ 𝑖 | |
| 2 | cfn | ⊢ Fin | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cr | ⊢ ℝ | |
| 5 | cmap | ⊢ ↑m | |
| 6 | 1 | cv | ⊢ 𝑖 |
| 7 | 4 6 5 | co | ⊢ ( ℝ ↑m 𝑖 ) |
| 8 | vy | ⊢ 𝑦 | |
| 9 | csqrt | ⊢ √ | |
| 10 | vk | ⊢ 𝑘 | |
| 11 | 3 | cv | ⊢ 𝑥 |
| 12 | 10 | cv | ⊢ 𝑘 |
| 13 | 12 11 | cfv | ⊢ ( 𝑥 ‘ 𝑘 ) |
| 14 | cmin | ⊢ − | |
| 15 | 8 | cv | ⊢ 𝑦 |
| 16 | 12 15 | cfv | ⊢ ( 𝑦 ‘ 𝑘 ) |
| 17 | 13 16 14 | co | ⊢ ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) |
| 18 | cexp | ⊢ ↑ | |
| 19 | c2 | ⊢ 2 | |
| 20 | 17 19 18 | co | ⊢ ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) |
| 21 | 6 20 10 | csu | ⊢ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) |
| 22 | 21 9 | cfv | ⊢ ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 23 | 3 8 7 7 22 | cmpo | ⊢ ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 24 | 1 2 23 | cmpt | ⊢ ( 𝑖 ∈ Fin ↦ ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 25 | 0 24 | wceq | ⊢ ℝn = ( 𝑖 ∈ Fin ↦ ( 𝑥 ∈ ( ℝ ↑m 𝑖 ) , 𝑦 ∈ ( ℝ ↑m 𝑖 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝑖 ( ( ( 𝑥 ‘ 𝑘 ) − ( 𝑦 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |