This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by AV, 23-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| frlmbas.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | ||
| frlmbas.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| frlmbas.b | ⊢ 𝐵 = { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } | ||
| Assertion | frlmbas | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐵 = ( Base ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | ⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) | |
| 2 | frlmbas.n | ⊢ 𝑁 = ( Base ‘ 𝑅 ) | |
| 3 | frlmbas.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | frlmbas.b | ⊢ 𝐵 = { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } | |
| 5 | fvex | ⊢ ( ringLMod ‘ 𝑅 ) ∈ V | |
| 6 | fnconstg | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ V → ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) Fn 𝐼 ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) Fn 𝐼 |
| 8 | eqid | ⊢ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) | |
| 9 | eqid | ⊢ { 𝑘 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } = { 𝑘 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } | |
| 10 | 8 9 | dsmmbas2 | ⊢ ( ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ) → { 𝑘 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 11 | 7 10 | mpan | ⊢ ( 𝐼 ∈ 𝑊 → { 𝑘 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → { 𝑘 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 13 | fvco2 | ⊢ ( ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ‘ 𝑥 ) = ( 0g ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑥 ) ) ) | |
| 14 | 7 13 | mpan | ⊢ ( 𝑥 ∈ 𝐼 → ( ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ‘ 𝑥 ) = ( 0g ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑥 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ‘ 𝑥 ) = ( 0g ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑥 ) ) ) |
| 16 | 5 | fvconst2 | ⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑥 ) = ( ringLMod ‘ 𝑅 ) ) |
| 17 | 16 | adantl | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑥 ) = ( ringLMod ‘ 𝑅 ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 0g ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑥 ) ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 19 | rlm0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 20 | 3 19 | eqtri | ⊢ 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 21 | 18 20 | eqtr4di | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 0g ‘ ( ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ‘ 𝑥 ) ) = 0 ) |
| 22 | 15 21 | eqtrd | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ‘ 𝑥 ) = 0 ) |
| 23 | 22 | neeq2d | ⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑥 ) ≠ ( ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ‘ 𝑥 ) ↔ ( 𝑘 ‘ 𝑥 ) ≠ 0 ) ) |
| 24 | 23 | rabbidva | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → { 𝑥 ∈ 𝐼 ∣ ( 𝑘 ‘ 𝑥 ) ≠ ( ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐼 ∣ ( 𝑘 ‘ 𝑥 ) ≠ 0 } ) |
| 25 | elmapfn | ⊢ ( 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) → 𝑘 Fn 𝐼 ) | |
| 26 | 25 | adantl | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → 𝑘 Fn 𝐼 ) |
| 27 | fn0g | ⊢ 0g Fn V | |
| 28 | ssv | ⊢ ran ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ⊆ V | |
| 29 | fnco | ⊢ ( ( 0g Fn V ∧ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) Fn 𝐼 ∧ ran ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ⊆ V ) → ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) Fn 𝐼 ) | |
| 30 | 27 7 28 29 | mp3an | ⊢ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) Fn 𝐼 |
| 31 | fndmdif | ⊢ ( ( 𝑘 Fn 𝐼 ∧ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) Fn 𝐼 ) → dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑘 ‘ 𝑥 ) ≠ ( ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ‘ 𝑥 ) } ) | |
| 32 | 26 30 31 | sylancl | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑘 ‘ 𝑥 ) ≠ ( ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ‘ 𝑥 ) } ) |
| 33 | simplr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑊 ) | |
| 34 | 3 | fvexi | ⊢ 0 ∈ V |
| 35 | 34 | a1i | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → 0 ∈ V ) |
| 36 | suppvalfn | ⊢ ( ( 𝑘 Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ∧ 0 ∈ V ) → ( 𝑘 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑘 ‘ 𝑥 ) ≠ 0 } ) | |
| 37 | 26 33 35 36 | syl3anc | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → ( 𝑘 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑘 ‘ 𝑥 ) ≠ 0 } ) |
| 38 | 24 32 37 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) = ( 𝑘 supp 0 ) ) |
| 39 | 38 | eleq1d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → ( dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin ↔ ( 𝑘 supp 0 ) ∈ Fin ) ) |
| 40 | elmapfun | ⊢ ( 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) → Fun 𝑘 ) | |
| 41 | id | ⊢ ( 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) → 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) | |
| 42 | 34 | a1i | ⊢ ( 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) → 0 ∈ V ) |
| 43 | 40 41 42 | 3jca | ⊢ ( 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) → ( Fun 𝑘 ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∧ 0 ∈ V ) ) |
| 44 | 43 | adantl | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → ( Fun 𝑘 ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∧ 0 ∈ V ) ) |
| 45 | funisfsupp | ⊢ ( ( Fun 𝑘 ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∧ 0 ∈ V ) → ( 𝑘 finSupp 0 ↔ ( 𝑘 supp 0 ) ∈ Fin ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → ( 𝑘 finSupp 0 ↔ ( 𝑘 supp 0 ) ∈ Fin ) ) |
| 47 | 39 46 | bitr4d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ) → ( dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin ↔ 𝑘 finSupp 0 ) ) |
| 48 | 47 | rabbidva | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } = { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } ) |
| 49 | eqid | ⊢ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) | |
| 50 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 51 | 2 50 | eqtri | ⊢ 𝑁 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 52 | 49 51 | pwsbas | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( 𝑁 ↑m 𝐼 ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 53 | 5 52 | mpan | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝑁 ↑m 𝐼 ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 54 | 53 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑁 ↑m 𝐼 ) = ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 55 | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 56 | 49 55 | pwsval | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 57 | 5 56 | mpan | ⊢ ( 𝐼 ∈ 𝑊 → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 58 | 57 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 59 | rlmsca | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) | |
| 60 | 59 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 61 | 60 | oveq1d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) = ( ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 62 | 58 61 | eqtr4d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) = ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 63 | 62 | fveq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( ( ringLMod ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 64 | 54 63 | eqtrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑁 ↑m 𝐼 ) = ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 65 | 64 | rabeqdv | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } = { 𝑘 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } ) |
| 66 | 48 65 | eqtr3d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → { 𝑘 ∈ ( 𝑁 ↑m 𝐼 ) ∣ 𝑘 finSupp 0 } = { 𝑘 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } ) |
| 67 | 4 66 | eqtrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐵 = { 𝑘 ∈ ( Base ‘ ( 𝑅 Xs ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∣ dom ( 𝑘 ∖ ( 0g ∘ ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ∈ Fin } ) |
| 68 | 1 | frlmval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 = ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) |
| 69 | 68 | fveq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( 𝑅 ⊕m ( 𝐼 × { ( ringLMod ‘ 𝑅 ) } ) ) ) ) |
| 70 | 12 67 69 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐵 = ( Base ‘ 𝐹 ) ) |