This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance of a pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphds.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| tcphds.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| Assertion | tcphds | ⊢ ( 𝑊 ∈ Grp → ( 𝑁 ∘ − ) = ( dist ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphds.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | tcphds.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 6 | 1 2 4 5 | tchnmfval | ⊢ ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 7 | 6 | coeq1d | ⊢ ( 𝑊 ∈ Grp → ( 𝑁 ∘ − ) = ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∘ − ) ) |
| 8 | 4 | tcphex | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V |
| 9 | 1 4 5 | tcphval | ⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
| 10 | 9 3 | tngds | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∈ V → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∘ − ) = ( dist ‘ 𝐺 ) ) |
| 11 | 8 10 | ax-mp | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ∘ − ) = ( dist ‘ 𝐺 ) |
| 12 | 7 11 | eqtrdi | ⊢ ( 𝑊 ∈ Grp → ( 𝑁 ∘ − ) = ( dist ‘ 𝐺 ) ) |