This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| issubm.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| issubm.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| Assertion | issubm | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | issubm.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 3 | issubm.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 4 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) | |
| 5 | 4 | pweqd | ⊢ ( 𝑚 = 𝑀 → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 ( Base ‘ 𝑀 ) ) |
| 6 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( 0g ‘ 𝑚 ) = ( 0g ‘ 𝑀 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑚 = 𝑀 → ( ( 0g ‘ 𝑚 ) ∈ 𝑡 ↔ ( 0g ‘ 𝑀 ) ∈ 𝑡 ) ) |
| 8 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) | |
| 9 | 8 | oveqd | ⊢ ( 𝑚 = 𝑀 → ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) |
| 11 | 10 | 2ralbidv | ⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) |
| 12 | 7 11 | anbi12d | ⊢ ( 𝑚 = 𝑀 → ( ( ( 0g ‘ 𝑚 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) ) |
| 13 | 5 12 | rabeqbidv | ⊢ ( 𝑚 = 𝑀 → { 𝑡 ∈ 𝒫 ( Base ‘ 𝑚 ) ∣ ( ( 0g ‘ 𝑚 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ) } = { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ) |
| 14 | df-submnd | ⊢ SubMnd = ( 𝑚 ∈ Mnd ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑚 ) ∣ ( ( 0g ‘ 𝑚 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ) } ) | |
| 15 | fvex | ⊢ ( Base ‘ 𝑀 ) ∈ V | |
| 16 | 15 | pwex | ⊢ 𝒫 ( Base ‘ 𝑀 ) ∈ V |
| 17 | 16 | rabex | ⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ∈ V |
| 18 | 13 14 17 | fvmpt | ⊢ ( 𝑀 ∈ Mnd → ( SubMnd ‘ 𝑀 ) = { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ) |
| 19 | 18 | eleq2d | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ) ) |
| 20 | eleq2 | ⊢ ( 𝑡 = 𝑆 → ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ↔ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) ) | |
| 21 | eleq2 | ⊢ ( 𝑡 = 𝑆 → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) | |
| 22 | 21 | raleqbi1dv | ⊢ ( 𝑡 = 𝑆 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 23 | 22 | raleqbi1dv | ⊢ ( 𝑡 = 𝑆 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 24 | 20 23 | anbi12d | ⊢ ( 𝑡 = 𝑆 → ( ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 25 | 24 | elrab | ⊢ ( 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ↔ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 26 | 1 | sseq2i | ⊢ ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 27 | 2 | eleq1i | ⊢ ( 0 ∈ 𝑆 ↔ ( 0g ‘ 𝑀 ) ∈ 𝑆 ) |
| 28 | 3 | oveqi | ⊢ ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) |
| 29 | 28 | eleq1i | ⊢ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
| 30 | 29 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
| 31 | 27 30 | anbi12i | ⊢ ( ( 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 32 | 26 31 | anbi12i | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 33 | 3anass | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) | |
| 34 | 15 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 35 | 34 | anbi1i | ⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 36 | 32 33 35 | 3bitr4ri | ⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ( ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 37 | 25 36 | bitri | ⊢ ( 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ( ( 0g ‘ 𝑀 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) } ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 38 | 19 37 | bitrdi | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |