This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015) (Proof shortened by AV, 18-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgpress.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| mgpress.2 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | ||
| Assertion | mgpress | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpress.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | mgpress.2 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 3 | simpr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( Base ‘ 𝑅 ) ⊆ 𝐴 ) | |
| 4 | 2 | fvexi | ⊢ 𝑀 ∈ V |
| 5 | 4 | a1i | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑀 ∈ V ) |
| 6 | simplr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝐴 ∈ 𝑊 ) | |
| 7 | eqid | ⊢ ( 𝑀 ↾s 𝐴 ) = ( 𝑀 ↾s 𝐴 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | 2 8 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 10 | 7 9 | ressid2 | ⊢ ( ( ( Base ‘ 𝑅 ) ⊆ 𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ 𝑊 ) → ( 𝑀 ↾s 𝐴 ) = 𝑀 ) |
| 11 | 3 5 6 10 | syl3anc | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑀 ↾s 𝐴 ) = 𝑀 ) |
| 12 | simpll | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑅 ∈ 𝑉 ) | |
| 13 | 1 8 | ressid2 | ⊢ ( ( ( Base ‘ 𝑅 ) ⊆ 𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → 𝑆 = 𝑅 ) |
| 14 | 3 12 6 13 | syl3anc | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑆 = 𝑅 ) |
| 15 | 14 | fveq2d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑅 ) ) |
| 16 | 2 11 15 | 3eqtr4a | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) ) |
| 17 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 18 | 2 17 | mgpval | ⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) |
| 19 | 18 | oveq1i | ⊢ ( 𝑀 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) = ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) |
| 20 | simpr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) | |
| 21 | 4 | a1i | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑀 ∈ V ) |
| 22 | simplr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝐴 ∈ 𝑊 ) | |
| 23 | 7 9 | ressval2 | ⊢ ( ( ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ 𝑊 ) → ( 𝑀 ↾s 𝐴 ) = ( 𝑀 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
| 24 | 20 21 22 23 | syl3anc | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑀 ↾s 𝐴 ) = ( 𝑀 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
| 25 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 26 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 27 | 25 26 | mgpval | ⊢ ( mulGrp ‘ 𝑆 ) = ( 𝑆 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 ) |
| 28 | simpll | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑅 ∈ 𝑉 ) | |
| 29 | 1 8 | ressval2 | ⊢ ( ( ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → 𝑆 = ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
| 30 | 20 28 22 29 | syl3anc | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 𝑆 = ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
| 31 | 1 17 | ressmulr | ⊢ ( 𝐴 ∈ 𝑊 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 32 | 31 | eqcomd | ⊢ ( 𝐴 ∈ 𝑊 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑅 ) ) |
| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑅 ) ) |
| 34 | 33 | opeq2d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 = 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) |
| 35 | 30 34 | oveq12d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑆 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑆 ) 〉 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
| 36 | 27 35 | eqtrid | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( mulGrp ‘ 𝑆 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
| 37 | basendxnplusgndx | ⊢ ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 38 | 37 | necomi | ⊢ ( +g ‘ ndx ) ≠ ( Base ‘ ndx ) |
| 39 | fvex | ⊢ ( .r ‘ 𝑅 ) ∈ V | |
| 40 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 41 | 40 | inex2 | ⊢ ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) ∈ V |
| 42 | fvex | ⊢ ( +g ‘ ndx ) ∈ V | |
| 43 | fvex | ⊢ ( Base ‘ ndx ) ∈ V | |
| 44 | 42 43 | setscom | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ ( +g ‘ ndx ) ≠ ( Base ‘ ndx ) ) ∧ ( ( .r ‘ 𝑅 ) ∈ V ∧ ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) ∈ V ) ) → ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
| 45 | 39 41 44 | mpanr12 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( +g ‘ ndx ) ≠ ( Base ‘ ndx ) ) → ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
| 46 | 28 38 45 | sylancl | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) = ( ( 𝑅 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) ) |
| 47 | 36 46 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( mulGrp ‘ 𝑆 ) = ( ( 𝑅 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑅 ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑅 ) ) 〉 ) ) |
| 48 | 19 24 47 | 3eqtr4a | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ ¬ ( Base ‘ 𝑅 ) ⊆ 𝐴 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) ) |
| 49 | 16 48 | pm2.61dan | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) ) |