This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 . (Contributed by Thierry Arnoux, 23-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ress0g.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| ress0g.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| ress0g.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | ress0g | ⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 0 = ( 0g ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ress0g.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | ress0g.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | ress0g.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 2 | ressbas2 | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 6 | simp3 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) | |
| 7 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 8 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ V ) |
| 10 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 11 | 1 10 | ressplusg | ⊢ ( 𝐴 ∈ V → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
| 13 | simp2 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 0 ∈ 𝐴 ) | |
| 14 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ Mnd ) | |
| 15 | 6 | sselda | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 16 | 2 10 3 | mndlid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 17 | 14 15 16 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 0 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 18 | 2 10 3 | mndrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑅 ) 0 ) = 𝑥 ) |
| 19 | 14 15 18 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( +g ‘ 𝑅 ) 0 ) = 𝑥 ) |
| 20 | 5 12 13 17 19 | grpidd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → 0 = ( 0g ‘ 𝑆 ) ) |