This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issrg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| issrg.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| issrg.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| issrg.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| issrg.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | issrg | ⊢ ( 𝑅 ∈ SRing ↔ ( 𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issrg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | issrg.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 3 | issrg.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | issrg.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | issrg.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | 2 | eleq1i | ⊢ ( 𝐺 ∈ Mnd ↔ ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 7 | 6 | bicomi | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ↔ 𝐺 ∈ Mnd ) |
| 8 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 9 | 3 | fvexi | ⊢ + ∈ V |
| 10 | 4 | fvexi | ⊢ · ∈ V |
| 11 | 10 | a1i | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → · ∈ V ) |
| 12 | 5 | fvexi | ⊢ 0 ∈ V |
| 13 | 12 | a1i | ⊢ ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 0 ∈ V ) |
| 14 | simplll | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑏 = 𝐵 ) | |
| 15 | simplr | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑡 = · ) | |
| 16 | eqidd | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑥 = 𝑥 ) | |
| 17 | simpllr | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑝 = + ) | |
| 18 | 17 | oveqd | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( 𝑦 𝑝 𝑧 ) = ( 𝑦 + 𝑧 ) ) |
| 19 | 15 16 18 | oveq123d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( 𝑥 · ( 𝑦 + 𝑧 ) ) ) |
| 20 | 15 | oveqd | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( 𝑥 𝑡 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 21 | 15 | oveqd | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( 𝑥 𝑡 𝑧 ) = ( 𝑥 · 𝑧 ) ) |
| 22 | 17 20 21 | oveq123d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 23 | 19 22 | eqeq12d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ↔ ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) ) |
| 24 | 17 | oveqd | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( 𝑥 𝑝 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 25 | eqidd | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑧 = 𝑧 ) | |
| 26 | 15 24 25 | oveq123d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 + 𝑦 ) · 𝑧 ) ) |
| 27 | 15 | oveqd | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( 𝑦 𝑡 𝑧 ) = ( 𝑦 · 𝑧 ) ) |
| 28 | 17 21 27 | oveq123d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 29 | 26 28 | eqeq12d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ↔ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 30 | 23 29 | anbi12d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 31 | 14 30 | raleqbidv | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 32 | 14 31 | raleqbidv | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) |
| 33 | simpr | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑛 = 0 ) | |
| 34 | 15 33 16 | oveq123d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( 𝑛 𝑡 𝑥 ) = ( 0 · 𝑥 ) ) |
| 35 | 34 33 | eqeq12d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ↔ ( 0 · 𝑥 ) = 0 ) ) |
| 36 | 15 16 33 | oveq123d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( 𝑥 𝑡 𝑛 ) = ( 𝑥 · 0 ) ) |
| 37 | 36 33 | eqeq12d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( 𝑥 𝑡 𝑛 ) = 𝑛 ↔ ( 𝑥 · 0 ) = 0 ) ) |
| 38 | 35 37 | anbi12d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ↔ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
| 39 | 32 38 | anbi12d | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 40 | 14 39 | raleqbidv | ⊢ ( ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ( ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 41 | 13 40 | sbcied | ⊢ ( ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ( [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 42 | 11 41 | sbcied | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑝 = + ) → ( [ · / 𝑡 ] [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 43 | 8 9 42 | sbc2ie | ⊢ ( [ 𝐵 / 𝑏 ] [ + / 𝑝 ] [ · / 𝑡 ] [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
| 44 | 7 43 | anbi12i | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ [ 𝐵 / 𝑏 ] [ + / 𝑝 ] [ · / 𝑡 ] [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 45 | 44 | anbi2i | ⊢ ( ( 𝑅 ∈ CMnd ∧ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ [ 𝐵 / 𝑏 ] [ + / 𝑝 ] [ · / 𝑡 ] [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) ) ↔ ( 𝑅 ∈ CMnd ∧ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) ) |
| 46 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) | |
| 47 | 46 | eleq1d | ⊢ ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ↔ ( mulGrp ‘ 𝑅 ) ∈ Mnd ) ) |
| 48 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 49 | 48 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 50 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) | |
| 51 | 50 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( +g ‘ 𝑟 ) = + ) |
| 52 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) | |
| 53 | 52 4 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 54 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) | |
| 55 | 54 5 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
| 56 | 55 | sbceq1d | ⊢ ( 𝑟 = 𝑅 → ( [ ( 0g ‘ 𝑟 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ↔ [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) ) |
| 57 | 53 56 | sbceqbid | ⊢ ( 𝑟 = 𝑅 → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( 0g ‘ 𝑟 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ↔ [ · / 𝑡 ] [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) ) |
| 58 | 51 57 | sbceqbid | ⊢ ( 𝑟 = 𝑅 → ( [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( 0g ‘ 𝑟 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ↔ [ + / 𝑝 ] [ · / 𝑡 ] [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) ) |
| 59 | 49 58 | sbceqbid | ⊢ ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( 0g ‘ 𝑟 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ↔ [ 𝐵 / 𝑏 ] [ + / 𝑝 ] [ · / 𝑡 ] [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) ) |
| 60 | 47 59 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ∧ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( 0g ‘ 𝑟 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) ↔ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ [ 𝐵 / 𝑏 ] [ + / 𝑝 ] [ · / 𝑡 ] [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) ) ) |
| 61 | df-srg | ⊢ SRing = { 𝑟 ∈ CMnd ∣ ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ∧ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( +g ‘ 𝑟 ) / 𝑝 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( 0g ‘ 𝑟 ) / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) } | |
| 62 | 60 61 | elrab2 | ⊢ ( 𝑅 ∈ SRing ↔ ( 𝑅 ∈ CMnd ∧ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ [ 𝐵 / 𝑏 ] [ + / 𝑝 ] [ · / 𝑡 ] [ 0 / 𝑛 ] ∀ 𝑥 ∈ 𝑏 ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) ) = ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) ) ∧ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 ) = ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ∧ ( ( 𝑛 𝑡 𝑥 ) = 𝑛 ∧ ( 𝑥 𝑡 𝑛 ) = 𝑛 ) ) ) ) ) |
| 63 | 3anass | ⊢ ( ( 𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ↔ ( 𝑅 ∈ CMnd ∧ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) ) | |
| 64 | 45 62 63 | 3bitr4i | ⊢ ( 𝑅 ∈ SRing ↔ ( 𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |