This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetres | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 2 | fdm | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom 𝐷 = ( 𝑋 × 𝑋 ) ) | |
| 3 | metreslem | ⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( 𝐷 ↾ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( 𝐷 ↾ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) ) |
| 5 | inss1 | ⊢ ( 𝑋 ∩ 𝑅 ) ⊆ 𝑋 | |
| 6 | xmetres2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑋 ∩ 𝑅 ) ⊆ 𝑋 ) → ( 𝐷 ↾ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑅 ) ) ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑅 ) ) ) |
| 8 | 4 7 | eqeltrd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑅 ) ) ) |